References
- V. Maakala, M. Järvinen, and V. Vuorinen, Optimizing the heat transfer performance of the recovery boiler superheaters using simulated annealing, surrogate modeling, and computational fluid dynamics, Energy, 160, 361-377 (2018). https://doi.org/10.1016/j.energy.2018.07.002
- J. H. Noh, D. S. Kim, and Y. J. Sung, The isolation of kraft lignin from black liquor during Korean red pine kraft pulping and evaluation of the isolated kraft lignin, Journal of Korea TAPPI, 49, 170-177 (2017).
- A. Tejado, C. Pena, J. Labidi, J. M. Echeverria, and I. Mondragon, Physico-chemical characterization of lignins from different sources for use in phenol-formaldehyde resin synthesis, Bioresource Technol., 98, 1655-1663 (2007). https://doi.org/10.1016/j.biortech.2006.05.042
- J. H. Cho, Environmental features and actions of pulp & paper, Journal of Korea TAPPI, 41, 13-21 (2009).
- B. Emami, Numerical Simulation of Kraft Recovery Boiler Sootblower Jets, PhD Dissertation, University of Toronto, Toronto, Canada (2009).
- J. Hu, Q. Zhang, and D. J. Lee, Kraft lignin biorefinery: A perspective, Bioresource Technol., 247, 1181-1183 (2018). https://doi.org/10.1016/j.biortech.2017.08.169
- E. Vakkilainen, Kraft Recovery Boilers - Principles and Practice, Suomen Soodakattilayhdistys r.y., Helsinki, Finland (2005).
- R. Horton, T. Grace, and T. Adams, The effects of black liquor spray parameters on combustion behavior in recovery furnace simulation, IPST Technical Paper Series, 435, 1-33 (1992).
- A. Lundborg, Simulation of the Flue Gas Flow through the Superheater in a Recovery Boiler, Master Dissertation, KTH-Royal Institute of Technology, Stockholm, Sweden (2005).
- K. J. Tak and J. H. Kim, Corrosion effect on inspection and replacement planning for a refinery plant, Comput. Chem. Eng., 117, 97-104 (2018). https://doi.org/10.1016/j.compchemeng.2018.05.027
- M. Kawaji, X. H. Shen, H. Tran, S. Esaki, and C. Dees, Prediction of heat transfer in the kraft recovery boiler superheater region, Tappi Journal, 78, 214-221 (1995).
- R. Holkar, B. Ramdas, E. Kunal, and B. Haridas, Cfd analysis of gas flow behaviour in economizer, J. Mech. Civil Eng., 11, 31-39 (2014).
- M. Granda, M. Trojan, and D. Taler, CFD analysis of steam superheater operation in steady and transient state, Energy, 199, 117423 (2020). https://doi.org/10.1016/j.energy.2020.117423
- K. Kumar, Integrated Computational Fluid Dynamics and 1D Process Modelling for Superheater Region in Recovery Boiler, Master Dissertation, Aalto University, Helsinki, Finland (2019).
- E. Vakkilainen, R. Horton, and T. Adams, The effect of recovery furnace bullnose designs on upper furnace flow and temperature profiles, IPST Technical Paper Series, 436, 1-26 (1992).
- V. Maakala, M. Jarvinen, and V. Vuorinen, Computational fluid dynamics modeling and experimental validation of heat transfer and fluid flow in the recovery boiler superheater region, Appl. Therm. Eng., 139, 222-238 (2018). https://doi.org/10.1016/j.applthermaleng.2018.04.084
- ANSYS Fluent User's Guide, USA (2019).
- ANSYS Fluent Theory Guide, USA (2013).
- H. T. Cho, B. J. Cha, S. W. Kim, J. W. Ryu, J. H. Kim, and I. Moon, Numerical analysis for particle deposit formation in reactor cyclone of residue fluidized catalytic cracking, Ind. Eng. Chem. Res., 52, 7252-7258 (2013). https://doi.org/10.1021/ie302509q
- H. T. Cho, J. H. Kim, C. H. Park, K. H. Lee, M. J. Kim, and I. Moon, Uneven distribution of particle flow in RFCC reactor riser, Powder Technol., 312, 113-123 (2017). https://doi.org/10.1016/j.powtec.2017.01.025
- J. P. Van Doormaal and G. D. Raithby, Enhancements of the SIMPLE method for predicting incompressible fluid flows, Numerical Heat Transfer, 7, 147-163 (1984).