References
- O. Ola and M. M. Maroto-Valer, Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction, J. Photochem. Photobiol. C-Photochem. Rev., 24, 16-42 (2015). https://doi.org/10.1016/j.jphotochemrev.2015.06.001
- J. Liu, N. K. Ma, W. Wu, and Q. G. He, Recent progress on photocatalytic heterostructures with full solar spectral responses, Chem. Eng. J., 393, 124719 (2020). https://doi.org/10.1016/j.cej.2020.124719
- D. R. Gamelin and H. U. Gudel, Design of luminescent inorganic materials: New photophysical processes studied by optical spectroscopy, Acc. Chem. Res., 33, 235-242 (2000). https://doi.org/10.1021/ar990102y
- D. Kim, N. Lee, Y. I. Park, and T. Hyeon, Recent advances in inorganic nanoparticle-based NIR luminescence imaging: Semiconductor nanoparticles and lanthanide nanoparticles, Bioconjugate Chem., 28, 115-123 (2017). https://doi.org/10.1021/acs.bioconjchem.6b00654
- D. Kim, J. Kim, Y. I. Park, N. Lee, and T. Hyeon, Recent development of inorganic nanoparticles for biomedical imaging, ACS Central Sci., 4, 324-336 (2018). https://doi.org/10.1021/acscentsci.7b00574
- H. Li, X. Wang, T. Y. Ohulchanskyy, and G. Y. Chen, Lanthanide-doped near-infrared nanoparticles for biophotonics, Adv. Mater., 33, 202000678 (2020).
- F. Wang and X. G. Liu, Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals, Chem. Soc. Rev., 38, 976-989 (2009). https://doi.org/10.1039/b809132n
- S. Q. Huang, L. Gu, C. Miao, Z. Y. Lou, N. W. Zhu, H. P. Yuan, and A. D. Shan, Near-infrared photocatalyst of Er3+/Yb3+codoped (CaF2@TiO2) nanoparticles with active-core/active-shell structure, J. Mater. Chem. A, 1, 7874-7879 (2013). https://doi.org/10.1039/c3ta11472d
- R. Balaji, S. Kumar, K. L. Reddy, V. Sharma, K. Bhattacharyya, and V. Krishnan, Near-infrared driven photocatalytic performance of lanthanide-doped NaYF4@CdS core-shell nanostructures with enhanced upconversion properties, J. Alloy. Compd., 724, 481-491 (2017). https://doi.org/10.1016/j.jallcom.2017.07.050
- Q. Z. Zhang, J. J. Deng, Z. H. Xu, M. Chaker, and D. L. Ma, High-efficiency broadband C3N4 photocatalysts: Synergistic effects from upconversion and plasmons, ACS Catal., 7, 6225-6234 (2017). https://doi.org/10.1021/acscatal.7b02013
- J. M. Zhang, Y. Huang, X. Jin, A. Nazartchouk, M. S. Liu, X. Tong, Y. H. Jiang, L. Ni, S. H. Sun, Y. H. Sang, H. Liu, L. Razzari, F. Vetrone, and J. Claverie, Plasmon enhanced upconverting core@triple-shell nanoparticles as recyclable panchromatic initiators (blue to infrared) for radical polymerization, Nanoscale Horiz., 4, 907-917 (2019). https://doi.org/10.1039/C9NH00026G
- M. Haase and H. Schafer, Upconverting nanoparticles, Angew. Chem. Int. Ed., 50, 5808-5829 (2011). https://doi.org/10.1002/anie.201005159
- F. Wang and X. G. Liu, Multicolor tuning of lanthanide-doped nanoparticles by single wavelength excitation, Acc. Chem. Res., 47, 1378-1385 (2014). https://doi.org/10.1021/ar5000067
- S. Heer, K. Kompe, H. U. Gudel, and M. Haase, Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals, Adv. Mater., 16, 2102-2105 (2004). https://doi.org/10.1002/adma.200400772
- Y. F. Wang, G. Y. Liu, L. D. Sun, J. W. Xiao, J. C. Zhou, and C. H. Yan, Nd3+-sensitized upconversion nanophosphors: Efficient in vivo bioimaging probes with minimized heating effect, ACS Nano, 7, 7200-7206 (2013). https://doi.org/10.1021/nn402601d
- J. Ke, S. Lu, X. Shang, Y. Liu, H. Guo, W. You, X. Li, J. Xu, R. Li, Z. Chen, and X. Chen, A strategy of NIR dual-excitation upconversion for ratiometric intracellular detection, Adv. Sci., 6, 1901874 (2019). https://doi.org/10.1002/advs.201901874
- X. J. Xie and X. G. Liu, Photonics: Upconversion goes broadband, Nat. Mater., 11, 842-843 (2012). https://doi.org/10.1038/nmat3426
- D. Song, S. Y. Chi, X. Li, C. X. Wang, Z. Li, and Z. Liu, Upconversion system with quantum dots as sensitizer: Improved photoluminescence and PDT efficiency, ACS Appl. Mater. Interfaces, 11, 41100-41108 (2019). https://doi.org/10.1021/acsami.9b16237
- W. Q. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, and J. C. Hummelen, Broadband dye-sensitized upconversion of near-infrared light, Nat. Photonics, 6, 560-564 (2012). https://doi.org/10.1038/nphoton.2012.158
- F. Wang, R. R. Deng, J. Wang, Q. X. Wang, Y. Han, H. M. Zhu, X. Y. Chen, and X. G. Liu, Tuning upconversion through energy migration in core-shell nanoparticles, Nat. Mater., 10, 968-973 (2011). https://doi.org/10.1038/nmat3149
- Q. Su, S. Han, X. Xie, H. Zhu, H. Chen, C.-K. Chen, R.-S. Liu, X. Chen, F. Wang, and X. F. Liu, The effect of surface coating on energy migration-mediated upconversion, J. Am. Chem. Soc., 134, 20849-20857 (2012). https://doi.org/10.1021/ja3111048
- W. K. Su, M. M. Zheng, L. Li, K. Wang, R. Qiao, Y. J. Zhong, Y. Hu, and Z. Q. Li, Directly coat TiO2 on hydrophobic NaYF4: Yb,Tm nanoplates and regulate their photocatalytic activities with the core size, J. Mater. Chem. A, 2, 13486-13491 (2014). https://doi.org/10.1039/C4TA02756F
- Y. W. Zhang and Z. L. Hong, Synthesis of lanthanide-doped NaYF4@TiO2 core-shell composites with highly crystalline and tunable TiO2 shells under mild conditions and their upconversion-based photocatalysis, Nanoscale, 5, 8930-8933 (2013). https://doi.org/10.1039/c3nr03051b
- E. J. Cheng, W. J. Yin, S. Bai, R. Qiao, Y. J. Zhong, and Z. Q. Li, Synthesis of Vis/NIR-driven hybrid photocatalysts by electrostatic assembly of NaYF4:Yb,Tm nanocrystals on g-C3N4 nanosheets, Mater. Lett., 146, 87-90 (2015). https://doi.org/10.1016/j.matlet.2015.02.010
- C. Yao, W. X. Wang, P. Y. Wang, M. Y. Zhao, X. M. Li, and F. Zhang, Near-infrared upconversion mesoporous cerium oxide hollow biophotocatalyst for concurrent pH-/H2O2-responsive O2-evolving synergetic cancer therapy, Adv. Mater., 30, 1704833 (2018). https://doi.org/10.1002/adma.201704833
- Z. B. Wu, X. Z. Yuan, G. M. Zeng, L. B. Jiang, H. Zhong, Y. C. Xie, H. Wang, X. H. Chen, and H. Wang, Highly efficient photocatalytic activity and mechanism of Yb3+/Tm3+ codoped In2S3 from ultraviolet to near infrared light towards chromium (VI) reduction and rhodamine B oxydative degradation, Appl. Catal. B-Environ., 225, 8-21 (2018). https://doi.org/10.1016/j.apcatb.2017.11.040
- S. Y. Lee, G. Lee, Y.-S. Jun, and Y. I. Park, Visible/near-infrared driven highly efficient photocatalyst based on upconversion nanoparticles/g-C3N4 nanocomposite, Appl. Surf. Sci., 508, 144839 (2020). https://doi.org/10.1016/j.apsusc.2019.144839
- E. Cheng, S. Zhou, M. Li, and Z. Q. Li, Synthesis of g-C3N4-based NaYF4:Yb,Tm@TiO2 ternary composite with enhanced Vis/NIR-driven photocatalytic activities, Appl. Surf. Sci., 410, 383-392 (2017). https://doi.org/10.1016/j.apsusc.2017.03.052
- X. Y. Guo, W. H. Di, C. F. Chen, C. X. Liu, X. Wang, and W. P. Qin, Enhanced near-infrared photocatalysis of NaYF4:Yb,Tm/CdS/TiO2 composites, Dalton Trans., 43, 1048-1054 (2014). https://doi.org/10.1039/c3dt52288a
- Q. Y. Tian, W. J. Yao, Z. H. Wu, J. Liu, L. Liu, W. Wu, and C. Z. Jiang, Full-spectrum-activated Z-scheme photocatalysts based on NaYF4:Yb3+/Er3+, TiO2 and Ag66Si2O7, J. Mater. Chem. A, 5, 23566-23576 (2017). https://doi.org/10.1039/C7TA07529D
- Y. Y. Zhang, L. L. Wang, S. H. Park, X. Y. Kong, X. F. Lan, Z. Y. Song, and J. S. Shi, Single near-infrared-laser driven Z-scheme photocatalytic H2 evolution on upconversion material@Ag3PO4@black phosphorus, Chem. Eng. J., 375, 121967 (2019). https://doi.org/10.1016/j.cej.2019.121967
- Y. C. Deng, L. Tang, C. Y. Feng, G. M. Zeng, J. J. Wang, Y. Lu, Y. N. Liu, J. F. Yu, S. Chen, and Y. Y. Zhou, Construction of plasmonic Ag and nitrogen-doped graphene quantum dots codecorated ultrathin graphitic carbon nitride nanosheet composites with enhanced photocatalytic activity: Full-spectrum response ability and mechanism insight, ACS Appl. Mater. Interfaces, 9, 42816-42828 (2017). https://doi.org/10.1021/acsami.7b14541
- Y. Gao, C. Shi, J. Z. Feng, G. Y. Zhao, H. Yu, Y. F. Bi, F. Ding, Y. G. Sun, and Z. H. Xu, Synergistic effect of upconversion and plasmons in NaYF4:Yb3+,Er3+,Tm3+@TiO2-Ag composites for MO photodegradation, RSC Adv., 7, 54555-54561 (2017). https://doi.org/10.1039/C7RA09368C
- A. Kumar, K. L. Reddy, S. Kumar, A. Kumar, V. Sharma, and V. Krishnan, Rational design and development of lanthanide-doped NaYF4@CdS-Au-RGO as quaternary plasmonic photocatalysts for harnessing visible-near-infrared broadband spectrum, ACS Appl. Mater. Interfaces, 10, 15565-15581 (2018). https://doi.org/10.1021/acsami.7b17822
- Z. H. Xu, M. Quintanilla, F. Vetrone, A. O. Govorov, M. Chaker, and D. L. Ma, Harvesting lost photons: Plasmon and upconversion enhanced broadband photocatalytic activity in core@shell microspheres based on lanthanide-doped NaYF4, TiO2, and Au, Adv. Funct. Mater., 25, 2950-2960 (2015). https://doi.org/10.1002/adfm.201500810