DOI QR코드

DOI QR Code

Improvement of Photocatalytic Performance using Near-Infrared Upconversion Nanoparticles

근적외선 업컨버전 나노입자를 이용한 광촉매 성능 향상

  • Park, Yong Il (School of Chemical Engineering, Chonnam National University)
  • 박용일 (전남대학교 화학공학부)
  • Received : 2021.01.12
  • Accepted : 2021.01.28
  • Published : 2021.04.10

Abstract

Semiconductor-based photocatalysts can only be activated with ultraviolet or visible light due to their intrinsic bandgap, and they cannot use the energy in the near-infrared region, which accounts for about 50% of solar energy. Therefore, in order to improve the performance of the semiconductor photocatalyst, it is necessary to utilize more solar energy in a broad band ranging from ultraviolet to near-infrared. Combining upconversion nanoparticles with semiconductor photocatalysts for near-infrared absorption have thus been reported. Upconversion nanoparticles can sequentially absorb multiple near-infrared photons and convert them into ultraviolet or visible to activate photocatalysts. In addition, by coupling the semiconductor photocatalyst and the upconversion nanoparticles with the plasmonic metal nanoparticles, the photocatalytic activity can be further improved. This review summarizes the recent studies on improving the photocatalytic performance with near-infrared absorption by using upconversion nanoparticles.

일반적인 반도체 기반의 광촉매는 물질 고유의 밴드갭 때문에 자외선이나 가시광선에 의해서만 활성화될 수 있고, 태양광 에너지의 약 50%를 차지하는 근적외선 영역의 에너지는 활용할 수 없다. 따라서 기존의 반도체 광촉매의 성능을 향상시키기 위해서는 자외선에서 근적외선에 이르는 넓은 영역에서 더 많은 태양광 에너지를 활용할 수 있어야 한다. 태양광의 근적외선 영역을 활용하기 위해 기존 반도체 광촉매를 업컨버전 나노입자와 결합하는 연구들이 수행되고 있다. 업컨버전 나노입자는 근적외선 광자를 여러 개 흡수하여 자외선이나 가시광선으로 변환하여 광촉매를 활성화할 수 있다. 그리고 반도체 광촉매와 업컨버전 나노입자에 플라즈모닉 금속 나노입자를 함께 결합시키면 태양광에 의한 광촉매 활성을 더욱 향상시킬 수 있다. 본 총설은 업컨버전 나노입자를 이용하여 근적외선 영역의 태양광 에너지가 광촉매의 성능 향상에 기여할 수 있도록 하는 최근의 연구결과를 바탕으로 서술하였다.

Keywords

References

  1. O. Ola and M. M. Maroto-Valer, Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction, J. Photochem. Photobiol. C-Photochem. Rev., 24, 16-42 (2015). https://doi.org/10.1016/j.jphotochemrev.2015.06.001
  2. J. Liu, N. K. Ma, W. Wu, and Q. G. He, Recent progress on photocatalytic heterostructures with full solar spectral responses, Chem. Eng. J., 393, 124719 (2020). https://doi.org/10.1016/j.cej.2020.124719
  3. D. R. Gamelin and H. U. Gudel, Design of luminescent inorganic materials: New photophysical processes studied by optical spectroscopy, Acc. Chem. Res., 33, 235-242 (2000). https://doi.org/10.1021/ar990102y
  4. D. Kim, N. Lee, Y. I. Park, and T. Hyeon, Recent advances in inorganic nanoparticle-based NIR luminescence imaging: Semiconductor nanoparticles and lanthanide nanoparticles, Bioconjugate Chem., 28, 115-123 (2017). https://doi.org/10.1021/acs.bioconjchem.6b00654
  5. D. Kim, J. Kim, Y. I. Park, N. Lee, and T. Hyeon, Recent development of inorganic nanoparticles for biomedical imaging, ACS Central Sci., 4, 324-336 (2018). https://doi.org/10.1021/acscentsci.7b00574
  6. H. Li, X. Wang, T. Y. Ohulchanskyy, and G. Y. Chen, Lanthanide-doped near-infrared nanoparticles for biophotonics, Adv. Mater., 33, 202000678 (2020).
  7. F. Wang and X. G. Liu, Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals, Chem. Soc. Rev., 38, 976-989 (2009). https://doi.org/10.1039/b809132n
  8. S. Q. Huang, L. Gu, C. Miao, Z. Y. Lou, N. W. Zhu, H. P. Yuan, and A. D. Shan, Near-infrared photocatalyst of Er3+/Yb3+codoped (CaF2@TiO2) nanoparticles with active-core/active-shell structure, J. Mater. Chem. A, 1, 7874-7879 (2013). https://doi.org/10.1039/c3ta11472d
  9. R. Balaji, S. Kumar, K. L. Reddy, V. Sharma, K. Bhattacharyya, and V. Krishnan, Near-infrared driven photocatalytic performance of lanthanide-doped NaYF4@CdS core-shell nanostructures with enhanced upconversion properties, J. Alloy. Compd., 724, 481-491 (2017). https://doi.org/10.1016/j.jallcom.2017.07.050
  10. Q. Z. Zhang, J. J. Deng, Z. H. Xu, M. Chaker, and D. L. Ma, High-efficiency broadband C3N4 photocatalysts: Synergistic effects from upconversion and plasmons, ACS Catal., 7, 6225-6234 (2017). https://doi.org/10.1021/acscatal.7b02013
  11. J. M. Zhang, Y. Huang, X. Jin, A. Nazartchouk, M. S. Liu, X. Tong, Y. H. Jiang, L. Ni, S. H. Sun, Y. H. Sang, H. Liu, L. Razzari, F. Vetrone, and J. Claverie, Plasmon enhanced upconverting core@triple-shell nanoparticles as recyclable panchromatic initiators (blue to infrared) for radical polymerization, Nanoscale Horiz., 4, 907-917 (2019). https://doi.org/10.1039/C9NH00026G
  12. M. Haase and H. Schafer, Upconverting nanoparticles, Angew. Chem. Int. Ed., 50, 5808-5829 (2011). https://doi.org/10.1002/anie.201005159
  13. F. Wang and X. G. Liu, Multicolor tuning of lanthanide-doped nanoparticles by single wavelength excitation, Acc. Chem. Res., 47, 1378-1385 (2014). https://doi.org/10.1021/ar5000067
  14. S. Heer, K. Kompe, H. U. Gudel, and M. Haase, Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals, Adv. Mater., 16, 2102-2105 (2004). https://doi.org/10.1002/adma.200400772
  15. Y. F. Wang, G. Y. Liu, L. D. Sun, J. W. Xiao, J. C. Zhou, and C. H. Yan, Nd3+-sensitized upconversion nanophosphors: Efficient in vivo bioimaging probes with minimized heating effect, ACS Nano, 7, 7200-7206 (2013). https://doi.org/10.1021/nn402601d
  16. J. Ke, S. Lu, X. Shang, Y. Liu, H. Guo, W. You, X. Li, J. Xu, R. Li, Z. Chen, and X. Chen, A strategy of NIR dual-excitation upconversion for ratiometric intracellular detection, Adv. Sci., 6, 1901874 (2019). https://doi.org/10.1002/advs.201901874
  17. X. J. Xie and X. G. Liu, Photonics: Upconversion goes broadband, Nat. Mater., 11, 842-843 (2012). https://doi.org/10.1038/nmat3426
  18. D. Song, S. Y. Chi, X. Li, C. X. Wang, Z. Li, and Z. Liu, Upconversion system with quantum dots as sensitizer: Improved photoluminescence and PDT efficiency, ACS Appl. Mater. Interfaces, 11, 41100-41108 (2019). https://doi.org/10.1021/acsami.9b16237
  19. W. Q. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, and J. C. Hummelen, Broadband dye-sensitized upconversion of near-infrared light, Nat. Photonics, 6, 560-564 (2012). https://doi.org/10.1038/nphoton.2012.158
  20. F. Wang, R. R. Deng, J. Wang, Q. X. Wang, Y. Han, H. M. Zhu, X. Y. Chen, and X. G. Liu, Tuning upconversion through energy migration in core-shell nanoparticles, Nat. Mater., 10, 968-973 (2011). https://doi.org/10.1038/nmat3149
  21. Q. Su, S. Han, X. Xie, H. Zhu, H. Chen, C.-K. Chen, R.-S. Liu, X. Chen, F. Wang, and X. F. Liu, The effect of surface coating on energy migration-mediated upconversion, J. Am. Chem. Soc., 134, 20849-20857 (2012). https://doi.org/10.1021/ja3111048
  22. W. K. Su, M. M. Zheng, L. Li, K. Wang, R. Qiao, Y. J. Zhong, Y. Hu, and Z. Q. Li, Directly coat TiO2 on hydrophobic NaYF4: Yb,Tm nanoplates and regulate their photocatalytic activities with the core size, J. Mater. Chem. A, 2, 13486-13491 (2014). https://doi.org/10.1039/C4TA02756F
  23. Y. W. Zhang and Z. L. Hong, Synthesis of lanthanide-doped NaYF4@TiO2 core-shell composites with highly crystalline and tunable TiO2 shells under mild conditions and their upconversion-based photocatalysis, Nanoscale, 5, 8930-8933 (2013). https://doi.org/10.1039/c3nr03051b
  24. E. J. Cheng, W. J. Yin, S. Bai, R. Qiao, Y. J. Zhong, and Z. Q. Li, Synthesis of Vis/NIR-driven hybrid photocatalysts by electrostatic assembly of NaYF4:Yb,Tm nanocrystals on g-C3N4 nanosheets, Mater. Lett., 146, 87-90 (2015). https://doi.org/10.1016/j.matlet.2015.02.010
  25. C. Yao, W. X. Wang, P. Y. Wang, M. Y. Zhao, X. M. Li, and F. Zhang, Near-infrared upconversion mesoporous cerium oxide hollow biophotocatalyst for concurrent pH-/H2O2-responsive O2-evolving synergetic cancer therapy, Adv. Mater., 30, 1704833 (2018). https://doi.org/10.1002/adma.201704833
  26. Z. B. Wu, X. Z. Yuan, G. M. Zeng, L. B. Jiang, H. Zhong, Y. C. Xie, H. Wang, X. H. Chen, and H. Wang, Highly efficient photocatalytic activity and mechanism of Yb3+/Tm3+ codoped In2S3 from ultraviolet to near infrared light towards chromium (VI) reduction and rhodamine B oxydative degradation, Appl. Catal. B-Environ., 225, 8-21 (2018). https://doi.org/10.1016/j.apcatb.2017.11.040
  27. S. Y. Lee, G. Lee, Y.-S. Jun, and Y. I. Park, Visible/near-infrared driven highly efficient photocatalyst based on upconversion nanoparticles/g-C3N4 nanocomposite, Appl. Surf. Sci., 508, 144839 (2020). https://doi.org/10.1016/j.apsusc.2019.144839
  28. E. Cheng, S. Zhou, M. Li, and Z. Q. Li, Synthesis of g-C3N4-based NaYF4:Yb,Tm@TiO2 ternary composite with enhanced Vis/NIR-driven photocatalytic activities, Appl. Surf. Sci., 410, 383-392 (2017). https://doi.org/10.1016/j.apsusc.2017.03.052
  29. X. Y. Guo, W. H. Di, C. F. Chen, C. X. Liu, X. Wang, and W. P. Qin, Enhanced near-infrared photocatalysis of NaYF4:Yb,Tm/CdS/TiO2 composites, Dalton Trans., 43, 1048-1054 (2014). https://doi.org/10.1039/c3dt52288a
  30. Q. Y. Tian, W. J. Yao, Z. H. Wu, J. Liu, L. Liu, W. Wu, and C. Z. Jiang, Full-spectrum-activated Z-scheme photocatalysts based on NaYF4:Yb3+/Er3+, TiO2 and Ag66Si2O7, J. Mater. Chem. A, 5, 23566-23576 (2017). https://doi.org/10.1039/C7TA07529D
  31. Y. Y. Zhang, L. L. Wang, S. H. Park, X. Y. Kong, X. F. Lan, Z. Y. Song, and J. S. Shi, Single near-infrared-laser driven Z-scheme photocatalytic H2 evolution on upconversion material@Ag3PO4@black phosphorus, Chem. Eng. J., 375, 121967 (2019). https://doi.org/10.1016/j.cej.2019.121967
  32. Y. C. Deng, L. Tang, C. Y. Feng, G. M. Zeng, J. J. Wang, Y. Lu, Y. N. Liu, J. F. Yu, S. Chen, and Y. Y. Zhou, Construction of plasmonic Ag and nitrogen-doped graphene quantum dots codecorated ultrathin graphitic carbon nitride nanosheet composites with enhanced photocatalytic activity: Full-spectrum response ability and mechanism insight, ACS Appl. Mater. Interfaces, 9, 42816-42828 (2017). https://doi.org/10.1021/acsami.7b14541
  33. Y. Gao, C. Shi, J. Z. Feng, G. Y. Zhao, H. Yu, Y. F. Bi, F. Ding, Y. G. Sun, and Z. H. Xu, Synergistic effect of upconversion and plasmons in NaYF4:Yb3+,Er3+,Tm3+@TiO2-Ag composites for MO photodegradation, RSC Adv., 7, 54555-54561 (2017). https://doi.org/10.1039/C7RA09368C
  34. A. Kumar, K. L. Reddy, S. Kumar, A. Kumar, V. Sharma, and V. Krishnan, Rational design and development of lanthanide-doped NaYF4@CdS-Au-RGO as quaternary plasmonic photocatalysts for harnessing visible-near-infrared broadband spectrum, ACS Appl. Mater. Interfaces, 10, 15565-15581 (2018). https://doi.org/10.1021/acsami.7b17822
  35. Z. H. Xu, M. Quintanilla, F. Vetrone, A. O. Govorov, M. Chaker, and D. L. Ma, Harvesting lost photons: Plasmon and upconversion enhanced broadband photocatalytic activity in core@shell microspheres based on lanthanide-doped NaYF4, TiO2, and Au, Adv. Funct. Mater., 25, 2950-2960 (2015). https://doi.org/10.1002/adfm.201500810