DOI QR코드

DOI QR Code

Compressive strength of circular concrete filled steel tubular stubs strengthened with CFRP

  • Ou, Jialing (School of Mechanical Engineering, Southwest Petroleum University) ;
  • Shao, Yongbo (School of Civil Engineering and Geomatics, Southwest Petroleum University)
  • Received : 2019.04.29
  • Accepted : 2021.03.15
  • Published : 2021.04.25

Abstract

The compressive strength of circular concrete filled steel tubular (C-CFST) stubs strengthened with carbon fiber reinforced polymer (CFRP) is studied theoretically. According to previous experimental results, the failure process and mechanism of circular CFRP-concrete filled steel tubular (C-CFRP-CFST) stubs is analyzed, and the loading process is divided into 3 stages, i.e., elastic stage, elasto-plastic stage and failure stage. Based on continuum mechanics, the theoretical model of C-CFRP-CFST stubs under axial compression is established based on the assumptions that steel tube and concrete are both in three-dimensional stress state and CFRP is in uniaxial tensile stress state. Equations for calculating the yield strength and the ultimate strength of C-CFRP-CFST stubs are deduced. Theoretical predictions from the presented equations are compared with existing experimental results. There are a total of 49 tested specimens, including 15 ones for comparison of yield strength and 44 ones for comparison of ultimate strength. It is found that the predicted results of most specimens are within an error limit of 10%. Finally, simplified equations for calculating both yield strength and ultimate strength of C-CFRP-CFST stubs are proposed.

Keywords

References

  1. Afaghi-Darabi, A. and Abdollahzadeh, G. (2019), "Effect of cooling rate on the post-fire behavior of CFST column", Comput. Concrete, 23(4), 281-294. https://doi.org/10.12989/cac.2019.23.4.281.
  2. Cai, S.H. and Jiao, Z.S. (1984), "Behavior and ultimate strength of short concrete-filled steel tubular columns", J. Build. Struct., 5(6), 13-29. (in Chinese). https://doi.org/10.14006/j.jzjgxb.1984.06.002.
  3. Che, Y., Wang, Q.L. and Shao, Y.B. (2012), "Compressive performances of the concrete filled circular CFRP-steel tube (C-CFRP-CFST)", Adv. Steel Constr., 8(4), 331-358. https://doi.org/10.18057/IJASC.2012.8.4.
  4. Dong, C.X., Kwan, A.K.H. and Ho, J.C.M. (2017), "Effects of external confinement on structural performance of concretefilled steel tubes", J. Constr. Steel Res., 132, 72-82. https://doi.org/10.1016/j.jcsr.2016.12.024.
  5. Ding, F.X., Lu, D.R., Bai, Y., Gong, Y.Z., Yu, Z.W. and Ni, M. and Li, W. (2018), "Behaviour of CFRP-confined concrete-filled circular steel tube stub columns under axial loading", Thin-Wall. Struct., 125, 107-118. https://doi.org/10.1016/j.tws.2018.01.015.
  6. Fu, Y., Tong, L., He, L. and Zhao, X.L. (2016), "Experimental and numerical investigation on behavior of CFRP-strengthened circular hollow section gap K-joints". Thin-Wall. Struct., 102, 80-97. https://doi.org/10.1016/j.tws.2016.01.020.
  7. Gu, W., Zhao, Y.H. and Shang, D.W. (2006), "Load carrying capacity of concrete filled CFRP-steel tubes under axial compression", Eng. Mech., 23(1), 149-153. (in Chinese). https://doi.org/10.3969/j.issn.1000-4750.2006.01.027.
  8. Hu, Y.M., Yu, T. and Teng, J.G. (2011), "FRP-confined circular concrete-filled thin steel tubes under axial compression", J. Compos. Constr., 15(5), 850-860. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000217.
  9. Han, L.H., Chen, F., Liao, F.Y., Tao, Z. and Uy, B. (2013), "Fire performance of concrete filled stainless steel tubular columns", Eng. Struct., 56(6), 165-181. https://doi.org/10.1016/j.engstruct.2013.05.005.
  10. Han, L.H., Li, W. and Bjorhovde, R. (2014), "Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members", J. Constr. Steel Res., 100, 211-228. https://doi.org/10.1016/j.jcsr.2014.04.016.
  11. He, L.S., Lin, S.Q. and Jiang, H.J. (2019), "Confinement Effect of Concrete-Filled Steel Tube Columns With Infill Concrete of Different Strength Grades", Front. Mater., 6, 1-9. https://doi.org/10.3389/fmats.2019.00071.
  12. Hasan, H.G., Ekmekyapar, T., and Shehab, B.A. (2019), "Mechanical performances of stiffened and reinforced concrete-filled steel tubes under axial compression", Mar. Struct., 65, 417-432. https://doi.org/10.1016/j.marstruc.2018.12.008.
  13. Liang, Q.Q. (2009), "Performance-based analysis of concrete-filled steel tubular beam-columns, part i: theory and algorithms", J. Constr. Steel Res., 65(2), 363-372. https://doi.org/10.1016/j.jcsr.2008.03.007.
  14. Liu, L. and Lu, Y. (2010), "Axial bearing capacity of short FRP confined concrete-filled steel tubular columns", J. Wuhan University of Technology-Materials Science Edition, 25(3), 454-458. https://doi.org/10.1007/s11595-010-0022-2.
  15. Lu, Y., Li, N. and Li, S. (2014), "Behavior of FRP-confined concrete-filled steel tube columns", Polymers, 6(5), 1333-1349. https://doi.org/10.3390/polym6051333.
  16. Mirza, S.A. and Lacroix, E.A. (2004), "Comparative strength analyses of concrete-encased steel composite columns", J. Struct. Eng., 130(12), 1941-1953. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:12(1941).
  17. Ma, Y.S., Wang, Y.F., Su, L. and Mei, S.Q. (2016), "Influence of creep on dynamic behavior of concrete filled steel tube arch bridges", Steel Compos. Struct., 21(1), 109-122. https://doi.org/10.12989/scs.2016.21.1.109.
  18. Nguyen, H., Hong, W.K., Ko, H.J. and Kim, S.K. (2019), "Finite element model for the interface between steel and concrete of CFST (concrete-filled steel tube)", Eng. Struct., 185, 141-158. https://doi.org/10.1016/j.engstruct.2019.01.068.
  19. Patel, V.I., Uy, B., Prajwal, K.A. and Aslani, F. (2016), "Confined concrete model of circular, elliptical and octagonal CFST short columns", Steel Compos. Struct., 22(3), 497-522. https://doi.org/10.12989/scs.2016.22.3.497.
  20. Parvin, A. and Wang, W. (2001), "Behavior of FRP jacketed concrete columns under eccentric loading", J. Compos. Constr., 5(3), 146-152. https://doi.org/10.1061/(ASCE)1090-0268(2001)5:3(146).
  21. Qu, H., Han, L.H. and Tao, Z. (2009), "Seismic performance of reinforced concrete beam to concrete-filled steel tubular columns joints", Key Eng. Mater., 400-402, 685-691. https://doi.org/10.4028/www.scientific.net/KEM.400-402.685.
  22. Roeder, C.W., Stephens, M.T. and Lehman, D.E. (2018), "Concrete filled steel tubes for bridge pier and foundation construction", Int. J. Steel Struct., 18(1), 39-49. https://doi.org/10.1007/s13296-018-0304-7.
  23. Stephens, M.T., Lehman, D.E. and Roeder, C.W. (2018), "Seismic performance modeling of concrete-filled steel tube bridges: tools and case study", Eng. Struct., 165, 88-105. https://doi.org/10.1016/j.engstruct.2018.03.019.
  24. Tao, Z., Han, L.H. and Zhuang, J.P. (2007), "Axial Loading Behavior of CFRP strengthened concrete-filled steel tubular stub columns", Adv. Struct. Eng., 10(1), 37-46. https://doi.org/10.1260/136943307780150814.
  25. Tao, Z, Wang, Z.B. and Yu, Q. (2013), "Finite element modelling of concrete-filled steel stub columns under axial compression", J. Constr. Steel Res., 89(5), 121-131. https://doi.org/10.1016/j.jcsr.2013.07.001.
  26. Wang, K. and Young, B. (2013), "Fire resistance of concrete-filled high strength steel tubular columns", Thin-Wall. Struct., 71(13), 46-56. https://doi.org/10.1016/j.tws.2013.05.005.
  27. Wei, Y., Wang, G. and Li, G.F. (2014), "Performance of circular concrete-filled fiber-reinforced polymer-steel composite tube columns under axial compression", J. Reinf. Plast. Compos., 33(20), 1911-1928. https://doi.org/10.1177/0731684414550836.
  28. Wang, Q.L. and Shao, Y.B. (2014), "Compressive performances of concrete filled square CFRP-steel tubes (S-CFRP-CFST)", Steel Compos. Struct., 16(5), 455-480. https://doi.org/10.12989/scs.2014.16.5.455.
  29. Wang, Q.L., Li, J., Shao, Y.B. and Zhao, W.J. (2015), "Flexural Performances of Square Concrete Filled CFRP-Steel Tubes (S-CF-CFRP-ST)", Adv. Struct. Eng., 18(8), 1319-1344. https://doi.org/10.1260/1369-4332.18.8.1319.
  30. Wang, Q.L., Qu, S.E., Shao, Y.B. and Feng, L.M. (2016), "Static behavior of axially compressed circular concrete filled CFRP-steel tubular (C-CF-CFRP-ST) columns with moderate slenderness", Adv. Steel Constr., 12(3), 263-295 https://doi.org/10.18057/IJASC.2016.12.3.4.
  31. Wan, C.Y. and Zha, X.X. (2016), "Nonlinear analysis and design of concrete-filled dual steel tubular columns under axial loading", Steel Compos. Struct., 20(3), 571-597. https://doi.org/10.12989/scs.2016.20.3.571.
  32. Wang, Q.L., Zhao, Z., Shao, Y.B. and Li, Q.L. (2017), "Static behavior of axially compressed square concrete filled CFRP-steel tubular (S-CF-CFRP-ST) columns with moderate slenderness", Thin-Wall. Struct., 110, 106-122. https://doi.org/10.1016/j.tws.2016.10.019.
  33. Xiao, C.Z., Cai, S.H., Chen, T. and Xu, C.L. (2012), "Experimental study on shear capacity of circular concrete filled steel tubes", Steel Compos. Struct., 13(5), 437-449. https://doi.org/10.12989/scs.2012.13.5.437.
  34. Yu, Z.W., Ding, F.X. and Cai, C.S. (2007), "Experimental behavior of circular concrete-filled steel tube stub columns", J. Constr. Steel Res., 63(2), 165-174. https://doi.org/10.1016/j.jcsr.2006.03.009.
  35. Yu, Q., Tao, Z. and Wu, Y.X. (2008), "Experimental behaviour of high performance concrete-filled steel tubular columns", Thin-Wall. Struct., 46(4), 362-370. https://doi.org/10.1016/j.tws.2007.10.001.
  36. Zhang, J.C., Huang, Y.S., Chen Y., Du, G.F. and Zhou, L.J. (2018), "Numerical and experimental study on seismic behavior of concrete-filled T-section steel tubular columns and steel beam planar frames", J. Central South Univ., 25(7), 1774-1785. https://doi.org/10.1007/s11771-018-3868-7.