참고문헌
- Abdelmalek, A., Bouazza, M., Zidour, M. and Benseddiq, N. (2019), "Hygrothermal Effects on the Free Vibration Behavior of Composite Plate Using nth-Order Shear Deformation Theory: a Micromechanical Approach", Iran J. Sci. Technol. Trans. Mech. Eng., 43, 61-73. https://doi.org/10.1007/s40997-017-0140-y.
- Abdul Kareem, Z.A. and Ibraheem Majeed, W. (2020), "Effect of boundary conditions on harmonic response of laminated plates", Compos. Mater. Eng., 2(2), 125-140. https://doi.org/10.12989/cme.2020.2.2.125.
- Abdulrazzaq, M.A., Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2020), "Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory", Steel Compos. Struct., 35(1), 147-157. https://doi.org/10.12989/scs.2020.35.1.147.
- Adhikari, B. and Singh, B.N. (2018), "An efficient higher order non-polynomial Quasi 3-D theory for dynamic responses of laminated composite plates", Compos. Struct., 189, 386-397. doi:10.1016/j.compstruct.2017.10.044.
- Akbas, S.D. (2015), "Wave propagation of a functionally graded beam in thermal environments", Steel Compos. Struct., 19(6), 1421-1447. https://doi.org/10.12989/scs.2015.19.6.1421.
- Akbas, S.D. (2019), "Nonlinear static analysis of laminated composite beams under hygro-thermal effect", Struct. Eng. Mech., 72(4), 433-441. https://doi.org/10.12989/sem.2019.72.4.433.
- Akbas, S.D. (2020a), "Dynamic responses of laminated beams under a moving load in thermal environment", Steel Compos. Struct., 35(6), 729-737. https://doi.org/10.12989/scs.2020.35.6.729.
- Akbas, S.D. (2020b), "Modal analysis of viscoelastic nanorods under an axially harmonic load", Adv. Nano Res., 8(4), 277-282. https://doi.org/10.12989/anr.2020.8.4.277.
- Al-Basyouni, K.S., Ghandourah, E., Mostafa, H.M. and Algarni, A. (2020), "Effect of the rotation on the thermal stress wave propagation in non-homogeneous viscoelastic body", Geomech. Eng., 21(1), 1-9. https://doi.org/10.12989/gae.2020.21.1.001.
- Alesadi, A., Galehdari, M. and Shojaee, S. (2017), "Free vibration and buckling analysis of cross-ply laminated composite plates using Carrera's unified formulation based on Isogeometric approach", Comput. Struct., 183, 38-47. https://doi.org/10.1016/j.compstruc.2017.01.013.
- Asiri, S.A., Akbas, S.D. and Eltaher, M.A. (2020), "Damped dynamic responses of a layered functionally graded thick beam under a pulse load", Struct. Eng. Mech., 75(6), 713-722. https://doi.org/10.12989/sem.2020.75.6.713.
- Avcar, M. (2015), "Effects of rotary inertia shear deformation and non-homogeneity on frequencies of beam", Struct. Eng. Mech., 55(4), 871-884. https://doi.org/10.12989/sem.2015.55.4.871.
- Avcar, M. (2016), "Effects of material non-homogeneity and two parameter elastic foundation on fundamental frequency parameters of Timoshenko beams", Acta Physica Polonica A, 130(1), 375-378. https://doi.org/10.12693/APhysPolA.129.375.
- Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.
- Avcar, M. and Mohammed, W.K.M. (2018), "Free vibration of functionally graded beams resting on Winkler-Pasternak foundation", Arabian J. Geosci., 11(10), 232. https://doi.org/10.1007/s12517-018-3579-2.
- Aydogdu, M. (2007), "Thermal buckling analysis of cross-ply laminated composite beams with general boundary conditions", Compos. Sci. Technol., 67, 1096-1104. https://doi.org/10.1016/j.compscitech.2006.05.021.
- Aydogdu, M. (2009), "A new shear deformation theory for laminated composite plates", Compos. Struct., 89, 94-101. https://doi.org/10.1016/j.compstruct.2008.07.008.
- Bakhshi, N and Taheri-Behrooz, F. (2019), "Length effect on the stress concentration factor of a perforated orthotropic composite plate under in-plane loading", Compos. Mater. Eng., 1(1), 71-90. https://doi.org/10.12989/cme.2019.1.1.071.
- Barati, M.R. and Shahverdi, H. (2020), "Finite element forced vibration analysis of refined shear deformable nanocomposite graphene platelet-reinforced beams", J. Braz. Soc. Mech. Sci. Eng., 42(1), 33. https://doi.org/10.1007/s40430-019-2118-8.
- Benferhat, R., Daouadji, T.H. and Rabahi, A. (2021a), "Effect of air bubbles in concrete on the mechanical behavior of RC beams strengthened in flexion by externally bonded FRP plates under uniformly distributed loading", Compos. Mater. Eng., 3(1), 41-55. https://doi.org/10.12989/cme.2021.3.1.041.
- Benferhat, R., Daouadji, T.H. and Rabahi, A. (2021b), "Effect of porosity on fundamental frequencies of FGM sandwich plates", Compos. Mater. Eng., 3(1), 25-40. https://doi.org/10.12989/cme.2021.3.1.025.
- Bensaid, I., Bekhadda, A. and Kerboua, B. (2018), "Dynamic analysis of higher order shear-deformable nanobeams resting on elastic foundation based on nonlocal strain gradient theory", Adv. Nano Res., 6(3), 279-298. https://doi.org/10.12989/anr.2018.6.3.279.
- Bensattalah, T., Bouakkaz, K., Zidour, M. and Daouadji, T.H. (2019a), "Critical buckling loads of carbon nanotube embedded in Kerr's medium", Adv. Nano Res., 6(4), 339. https://doi.org/10.12989/anr.2018.6.4.339.
- Bensattalah, T., Zidour, M. and Daouadji, T.S. (2019b), "A new nonlocal beam model for free vibration analysis of chiral single-walled carbon nanotubes", Compos. Mater. Eng., 1(1), 21-31. https://doi.org/10.12989/cme.2019.1.1.021.
- Boulal, A., Bensattalah, T., Karas, A., Zidour, M., Heireche, H. and Adda Bedia, E.A. (2020), "Buckling of carbon nanotube reinforced composite plates supported by Kerr foundation using Hamilton's energy principle", Struct. Eng. Mech., 73(2), 209-223. https://doi.org/10.12989/sem.2020.73.2.209.
- Cetkovic, M. and Vuksanovic, D. (2009), "Bending, free vibrations and buckling of laminated composite and sandwich plates using a layerwise displacement model", Compos. Struct. 88, 219-227. https://doi.org/10.1016/j.compstruct.2008.03.039.
- Chai, G.B. and Yap C.W. (2008), "Coupling effects in bending, buckling and free vibration of generally laminated composite beams", Compos. Sci. Technol., 68, 1664-1670. https://doi.org/10.1016/j.compscitech.2008.02.014.
- Chami, K., Messafer, T. and Hadji, L. (2020), "Analytical modeling of bending and free vibration of thick advanced composite beams resting on Winkler-Pasternak elastic foundation", Earthq. Struct., 19(2), 91-101. https://doi.org/10.12989/eas.2020.19.2.091.
- Civalek, O., Dastjerdi, S., Akbas, S.D. and Akgoz, B. (2020), "Vibration analysis of carbon nanotube-reinforced composite microbeams", Math. Meth. Appl. Sci., 1-17. https://doi.org/10.1002/mma.7069.
- Dabbagh, A., Rastgoo, A. and Ebrahimi, F. (2019), "Finite element vibration analysis of multi-scale hybrid nanocomposite beams via a refined beam theory", Thin-Wall. Struct., 140, 304-317. https://doi.org/10.1016/j.tws.2019.03.031.
- Daraei, B., Shojaee, S. and Hamzehei-Javaran, S. (2020), "Free vibration analysis of axially moving laminated beams with axial tension based on 1D refined theories using Carrera unified formulation", Steel Compos. Struct., 37(1), 37-49. http://dx.doi.org/10.12989/scs.2020.37.1.037.
- Demir, C. and Civalek, O. (2017), "On the analysis of microbeams", Int. J. Eng. Sci., 121, 14-33. https://doi.org/10.1016/j.ijengsci.2017.08.016.
- Dihaj, A., Zidour, M., Meradjah, M., Rakrak, K., Heireche, H. and Chemi, A. (2018), "Free vibration analysis of chiral double-walled carbon nanotube embedded in an elastic medium using non-local elasticity theory and Euler Bernoulli beam model", Struct. Eng. Mech., 65(3), 335-342. https://doi.org/10.12989/sem.2018.65.3.335.
- Eltaher, M.A. and Akbas, S.D. (2020), "Transient response of 2D functionally graded beam structure", Struct. Eng. Mech., 75(3), 357-367. https://doi.org/10.12989/sem.2020.75.3.357.
- Eltaher, M.A., Almalki, T.A., Almitani, K. and Ahmed, K.I. (2019b), "Participation Factor and Vibration of Carbon Nanotube with Vacancies", J. Nano Res., 57, 158-174. https://doi.org/10.4028/www.scientific.net/jnanor.57.158.
- Eltaher, M.A., Mohamed, N., Mohamed, S. and Seddek, L.F. (2019c), "Postbuckling of Curved Carbon Nanotubes Using Energy Equivalent Model", J. Nano Res., 57, 136-157. https://doi.org/10.4028/www.scientific.net/jnanor.57.136.
- Eltaher, M.A., Mohamed, S.A. and Melaibari, A. (2020a), "Static stability of a unified composite beams under varying axial loads", Thin-Wall. Struct., 147, 106488. https://doi.org/10.1016/j.tws.2019.106488.
- Esmaeili, M. and Tadi Beni, Y. (2019), "Vibration and Buckling Analysis of Functionally Graded Flexoelectric Smart Beam", J. Appl. Comput. Mech., 5(5), 900-917. https://doi.org/10.22055/JACM.2019.27857.1439.
- Eyvazian, A., Hamouda, A.M., Tarlochan, F., Mohsenizadeh, S., and Dastjerdi, A.A. (2019), "Damping and vibration response of viscoelastic smart sandwich plate reinforced with non-uniform Graphene platelet with magnetorheological fluid core", Steel Compos. Struct., 33(6), 891-906. http://dx.doi.org/10.12989/scs.2019.33.6.891.
- Eyvazian, A., Musharavati, F., Talebizadehsardari, P. and Sebaey, A.T. (2020), "Free vibration of FG-GPLRC spherical shell on two parameter elastic foundation", Steel Compos. Struct., 36(6), 711-727. http://dx.doi.org/10.12989/scs.2020.36.6.711.
- Faleh, N.M., Abboud, I.K. and Nori, A.F. (2020), "Nonlinear stability of smart nonlocal magneto-electro-thermo-elastic beams with geometric imperfection and piezoelectric phase effects", Smart Struct. Syst., 25(6), 707-717. https://doi.org/10.12989/SSS.2020.25.6.707.
- Faleh, N.M., Ahmed, R.A. and Fenjan, R.M. (2018), "On vibrations of porous FG nanoshells", Int. J. Eng. Sci., 133, 1-14. https://doi.org/10.1016/j.ijengsci.2018.08.007.
- Feng, H., Shen, D. and Tahouneh, V. (2020), "Vibration analysis of sandwich sector plate with porous core and functionally graded wavy carbon nanotube-reinforced layers", Steel Compos. Struct., 37(6), 711-731. http://dx.doi.org/10.12989/scs.2020.37.6.711.
- Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2020a), "Nonlocal nonlinear dynamic behavior of composite piezo-magnetic beams using a refined higher-order beam theory", Steel Compos. Struct., 35(4), 545-554. https://doi.org/10.12989/SCS.2020.35.4.545.
- Fenjan, R.M., Ahmed, R.A., Faleh, N.M. and Hani, F.M. (2020c), "Static stability analysis of smart nonlocal thermo-piezo-magnetic plates via a quasi-3D formulation", Smart Struct. Syst., 26(1), 77-87. https://doi.org/10.12989/sss.2020.26.1.077.
- Fenjan, R.M., Faleh, N.M. and Ridha, A.A. (2020b), "Strain gradient based static stability analysis of composite crystalline shell structures having porosities", Steel Compos. Struct., 36(6), 631-642. https://doi.org/10.12989/scs.2020.36.6.631.
- Fenjan, R.M., Ahmed, R.A., Alasadi, A.A. and Faleh, N.M. (2019), "Nonlocal strain gradient thermal vibration analysis of double-coupled metal foam plate system with uniform and non-uniform porosities", Coupled Syst Mech., 8(3), 247-257. https://doi.org/10.12989/csm.2019.8.3.247.
- Ghandourh, E.E. and Abdraboh, A.M. (2020), "Dynamic analysis of functionally graded nonlocal nanobeam with different porosity models", Steel Compos. Struct., 36(3), 293-305. https://doi.org/10.12989/scs.2020.36.3.293.
- Hadji, L. (2020), "Influence of the distribution shape of porosity on the bending of FGM beam using a new higher order shear deformation model", Smart Struct. Syst., 26(2), 253-262. https://doi.org/10.12989/sss.2020.26.2.253.
- Hadji, L., Daouadji, T.H., Meziane, M.A.A. and Bedia, E.A.A. (2016), "Analyze of the interfacial stress in reinforced concrete beams strengthened with externally bonded CFRP plate", Steel Compos. Struct., 20(2), 413-429. https://doi.org/10.12989/scs.2016.20.2.413.
- Hadji, L., Zouatnia, N., and Bernard, F., (2019), "An analytical solution for bending and free vibration responses of functionally graded beams with porosities: Effect of the micromechanical models", Struct. Eng. Mech., 69(2), 231-241. https://doi.org/10.12989/sem.2019.69.2.231.
- Hajianmaleki, M. and Qatu, M.S. (2013), "Vibrations of straight and curved composite beams: A Review", Compos Struct.,100, 218-232. https://doi.org/10.1016/j.compstruct.2013.01.001.
- Hamed, M.A., Mohamed, S.A. and Eltaher, M.A, (2020), "Buckling analysis of sandwich beam rested on elastic foundation and subjected to varying axial in-plane loads", Steel Compos. Struct., 34(1), 75-89. https://doi.org/10.12989/scs.2020.34.1.075.
- Hamidi, A., Zidour, M., Bouakkaz, K. and Bensattalah, T. (2018). "Thermal and Small-Scale Effects on Vibration of Embedded Armchair Single-Walled Carbon Nanotubes", J. Nano Res., 51, 24-38. https://doi.org/10.4028/www.scientific.net/JNanoR.51.24.
- Hasim, K.A. (2018), "Isogeometric static analysis of laminated composite plane beams by using refined zigzag theory", Compos. Struct., 186, 365-374. https://doi.org/10.1016/j.compstruct.2017.12.033.
- Hussain, M. and Naeem, M.N. (2019), "Rotating response on the vibrations of functionally graded zigzag and chiral single walled carbon nanotubes", Appl. Math. Model., 75, 506-520. https://doi.org/10.1016/j.apm.2019.05.039.
- Jalaei, M.H. and Civalek, O. (2019), "On dynamic instability of magnetically embedded viscoelastic porous FG nanobeam", Int. J. Eng. Sci., 143, 14-32. https://doi.org/10.1016/j.ijengsci.2019.06.013.
- Kant, T. and Swaminathan, K. (2001), "Analytical solutions for free vibration of laminated composite and sandwich plates based on a higher-order refined theory", Compos. Struct., 53(1), 73-85. https://doi.org/10.1016/s0263-8223(00)00180-x.
- Kapania, R.K. and Raciti, S. (1989a), "Recent advances in analysis of laminated beams and plates: Part II. Vibrations and wave propagation", AIAA J., 27(7), 934-946. https://doi.org/10.2514/3.59909.
- Kapania, R.K. and Raciti, S. (1989b), "Recent advanced in analysis of laminated beams and plates. Part I. Shear effects and buckling", AIAA J., 27(7), 923-934. https://doi.org/10.2514/3.10202
- Kar, V.R., Mahapatra, T.R. and Panda, S.K. (2017), "Effect of different temperature load on thermal postbuckling behaviour of functionally graded shallow curved shell panels", Compos. Struct., 160, 1236-1247. https://doi.org/10.1016/j.compstruct.2016.10.125.
- Karakoti, A. and Kar, V.R. (2019), "Deformation characteristics of sinusoidally-corrugated laminated composite panel - A higher-order finite element approach", Compos. Struct., 216, 151-158. https://doi.org/10.1016/j.compstruct.2019.02.097.
- Karami, B. and Shahsavari, D. (2019), "Nonlocal strain gradient model for thermal stability of FG nanoplates integrated with piezoelectric layers", Smart Struct. Syst., 23(3), 215-225. https://doi.org/10.12989/sss.2019.23.3.215.
- Katariya, P.V. and Panda, S.K. (2020), "Numerical analysis of thermal post-buckling strength of laminated skew sandwich composite shell panel structure including stretching effect", Steel Compos. Struct., 34(2), 279-288. https://doi.org/10.12989/scs.2020.34.2.279.
- Katariya, P.V., Panda, S.K., Hirwani, C.K., Mehar, K. and Thakare, O. (2017), "Enhancement of thermal buckling strength of laminated sandwich composite panel structure embedded with shape memory alloy fibre", Smart Struct. Syst., 20(5), 595-605. https://doi.org/10.12989/sss.2017.20.5.595.
- Kiani, Y. (2019), "NURBS-based thermal buckling analysis of graphene platelet reinforced composite laminated skew plates", J. Therm. Stresses, 1-19. https://doi.org/10.1080/01495739.2019.1673687.
- Kiani, Y. and Mirzaei, M. (2019), "Isogeometric thermal postbuckling of FG-GPLRC laminated plates", Steel Compos. Struct., 32(6), 821-832. https://doi.org/10.12989/scs.2019.32.6.821.
- Kim, W. and Reddy, J.N. (2011), "Nonconventional finite element models for nonlinear analysis of beams", Int. J. Comput. Method., 8(3), 349-368. https://doi.org/10.1142/s0219876211002678.
- Kunbar, L.A.H., Hamad, L.B., Ahmed, R.A. and Faleh, N.M. (2020), "Nonlinear vibration of smart nonlocal magneto-electro-elastic beams resting on nonlinear elastic substrate with geometrical imperfection and various piezoelectric effects", Smart Struct. Syst., 25(5), 619-630. https://doi.org/10.12989/sss.2020.25.5.619.
- Loja, M.A.R., Barbosa, J.I. and Soares, C.M.M. (2001), "Static and dynamic behaviour of laminated composite beams", Int. J. Struct. Stab. Dynam., 1(04), 545-560. https://doi.org/10.1142/s0219455401000354.
- Madenci, E and Gulcu, S. (2020), "Optimization of flexure stiffness of FGM beams via artificial neural networks by mixed FEM", Struct. Eng. Mech., 75(5), 633-642. https://doi.org/10.12989/sem.2020.75.5.633 633.
- Madenci, E and Ozutok, A. (2017), "Variational approximate and mixed-finite element solution for static analysis of laminated composite plates", Solid State Phenomena., 267, 35-39. https://doi.org/10.4028/www.scientific.net/SSP.267.35.
- Madenci, E and Ozutok, A. (2020), "Variational approximate for high order bending analysis of laminated composite plates", Struct. Eng. Mech., 73(1), 97-108. https://doi.org/10.12989/sem.2020.73.1.097.
- Madenci, E. (2019), "A refined functional and mixed formulation to static analyses of fgm beams", Struct. Eng. Mech., 69(4), 427-437. https://doi.org/10.12989/sem.2019.69.4.427.
- Mantari, J.L. and Ore, M. (2015), "Free vibration of single and sandwich laminated composite plates by using a simplified FSDT", Compos. Struct., 132, 952-959. doi:10.1016/j.compstruct.2015.06.035.
- Mantari, J.L., Oktem, A.S. and Guedes Soares, C. (2011), "Static and dynamic analysis of laminated composite and sandwich plates and shells by using a new higher-order shear deformation theory", Compos. Struct., 94(1), 37-49. https://doi.org/10.1016/j.compstruct.2011.07.020.
- Matsunaga, H. (2007), "Vibration and buckling of cross-ply laminated composite circular cylindrical shells according to a global higher-order theory", Int. J. Mech. Sci.,49, 1060-1075. https://doi.org/10.1016/j.ijmecsci.2006.11.008.
- Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., 7(3), 181-190. https://doi.org/10.12989/ANR.2019.7.3.181.
- Mehar, K., Panda, S.K. and Mahapatra, T.R. (2017), "Thermoelastic nonlinear frequency analysis of CNT reinforced functionally graded sandwich structure", Eur. J. Mech. - A/Solids, 65, 384-396. https://doi.org/10.1016/j.euromechsol.2017.05.005.
- Mercan, K., Ebrahimi, F. and Civalek, O. (2020), "Vibration of angle-ply laminated composite circular and annular plates", Steel Compos.Struct., 34(1), 141-154. https://doi.org/10.12989/SCS.2020.34.1.141.
- Merzoug, M., Bourada, M., Sekkal, M., Ali Chaibdra, A., Belmokhtar, C., Benyoucef, S. and Benachour, A. (2020), "2D and quasi 3D computational models for thermoelastic bending of FG beams on variable elastic foundation: Effect of the micromechanical models", Geomech. Eng., 22(4), 361-374. https://doi.org/10.12989/gae.2020.22.4.361.
- Nguyen, N.D., Nguyen, T.K., Nguyen, T.N. and Thai, H.T. (2018), "New Ritz-solution shape functions for analysis of thermo-mechanical buckling and vibration of laminated composite beams", Compos. Struct., 184, 452-460. https://doi.org/10.1016/j.compstruct.2017.10.003.
- Noor, A.K. (1973), "Free vibrations of multilayered composite plates", AIAA J., 11(7), 1038-1039. doi:10.2514/3.6868.
- Noor, A.K. and Burton, W.S. (1990), "Three-dimensional solutions for anti-symmetrically laminated anisotropic plates", J Appl Mech.- T ASME, 57(1), 182-188. https://doi.org/10.1115/1.2888300.
- Ozutok, A. and Madenci, E. (2017), "Static analysis of laminated composite beams based on higher-order shear deformation theory by using mixed-type finite element method", Int. J. Mech. Sci., 130, 234-243. https://doi.org/10.1016/j.ijmecsci.2017.06.013.
- Panjehpour, M., Loh, E.W.K. and Deepak, T.J. (2018), "Structural Insulated Panels: State-of-the-Art", Trends Civil Eng. Architect., 3(1), 336-340. https://doi.org/10.32474/TCEIA.2018.03.000151.
- Patel, B.P., Ganapathi, M. and Makhecha, D.P. (2002), "Hygrothermal effects on the structural behaviour of thick composite laminates using higher-order theory", Compos. Struct., 56(1), 25-34. https://doi.org/10.1016/s0263-8223(01)00182-9.
- Rachedi, M.A., Benyoucef, S., Bouhadra, A., Bachir Bouiadjra, R., Sekkal, M. and Benachour, A. (2020), "Impact of the homogenization models on the thermoelastic response of FG plates on variable elastic foundation", Geomech. Eng., 22(1), 65-80. https://doi.org/10.12989/gae.2020.22.1.065.
- Reddy, J.N. (1997), "Mechanics of laminated composite plates, theory and analysis", Boca Raton. CRC Press.
- Rodrigues, J.D., Roque, C.M.C., Ferreira, A.J.M., Carrera, E. and Cinefra, M. (2011), "Radial basis functions-finite differences collocation and a Unified Formulation for bending, vibration and buckling analysis of laminated plates, according to Murakami's zig-zag theory", Compos. Struct., 93(7), 1613-1620. https://doi.org/10.1016/j.compstruct.2011.01.009.
- Safa, A., Hadji, L., Bourada, M. and Zouatnia, N. (2019), "Thermal vibration analysis of FGM beams using an efficient shear deformation beam theory", Earthq. Struct., 17(3), 329-336. https://doi.org/10.12989/eas.2019.17.3.329.
- Safaei, B. (2020), "The effect of embedding a porous core on the free vibration behavior of laminated composite plates", Steel Compos. Struct., 35(5), 659-670. https://doi.org/10.12989/SCS.2020.35.5.659.
- Sahouane, A., Hadji, L. and Bourada, M. (2019), "Numerical analysis for free vibration of functionally graded beams using an original HSDBT", Earthq. Struct., 17(1), 31-37. https://doi.org/10.12989/eas.2019.17.1.031.
- Sayyad, A.S., Shinde, B.M. and Ghugal, Y.M. (2016), "Bending, Vibration and Buckling of Laminated Composite Plates Using a Simple Four Variable Plate Theory", Latin Am. J. Solid. Struct., 13(3), 516-535. https://doi.org/10.1590/1679-78252241.
- Sayyad, A.S. and Ghugal, Y.M. (2015), "On the free vibration analysis of laminated composite and sandwich plates: A review of recent literature with some numerical results", Compos. Struct., 129,177-201. https://doi.org/10.1016/j.compstruct.2015.04.007.
- Selmi, A. (2020a), "Dynamic behavior of axially functionally graded simply supported beams", Smart Struct. Syst., 25(6), 669-678. https://doi.org/10.12989/sss.2020.25.6.669.
- Selmi, A. (2020b), "Exact solution for nonlinear vibration of clamped-clamped functionally graded buckled beam", Smart Struct. Syst., 26(3), 361-371. https://doi.org/10.12989/sss.2020.26.3.361.
- Selmi, A. and Bisharat, A. (2018), "Free vibration of functionally graded SWNT reinforced aluminum alloy beam", J. Vibroeng., 20(5), 2151-2164. https://doi.org/10.21595/jve.2018.19445.
- Shi, P., Dong, C., Sun, F., Liu, W. and Hu, Q. (2018), "A new higher order shear deformation theory for static, vibration and buckling responses of laminated plates with the isogeometric analysis", Compos. Struct., 204, 342-358. https://doi.org/10.1016/j.compstruct.2018.07.080.
- Singh, V.K. and Panda, S.K. (2015), "Large amplitude free vibration analysis of laminated composite spherical shells embedded with piezoelectric layers", Smart Struct. Syst., 16(5), 853-872. https://doi.org/10.12989/SSS.2015.16.5.853.
- Sofiyev, A., Aksogan, O., Schnack, E. and Avcar, M. (2008), "The Stability of a Three-Layered Composite Conical Shell Containing a FGM Layer Subjected to External Pressure", Mech. Adv. Mater. Struct., 15(6-7), 461-466. https://doi.org/10.1080/15376490802138492.
- Sofiyev, A.H., Alizada, A.N., Akin, O. Valiyev, A., Avcar, M. and Adiguzel, S. (2012), "On the stability of FGM shells subjected to combined loads with different edge conditions and resting on elastic foundations", Acta Mech., 223, 189-204. https://doi.org/10.1007/s00707-011-0548-1.
- Tayeb, T.S., Zidour, M., Bensattalah, T., Heireche, H., Benahmed, A. and Bedia, E.A. (2020), "Mechanical buckling of FG-CNTs reinforced composite plate with parabolic distribution using Hamilton's energy principle", Adv. Nano Res., 8(2), 135-148. https://doi.org/10.12989/anr.2020.8.2.135.
- Thai, C.H., Nguyen-Xuan, H., Bordas, S.P.A., Nguyen-Thanh, N. and Rabczuk, T. (2015), "Isogeometric Analysis of Laminated Composite Plates Using the Higher-Order Shear Deformation Theory", Mech. Adv. Mater. Struct., 22(6), 451-469. https://doi.org/10.1080/15376494.2013.779050.
- Thai, H.T. and Choi, D.H. (2013), "A simple first-order shear deformation theory for laminated composite plates", Compos. Struct.,106, 754-763. https://doi.org/10.1016/j.compstruct.2013.06.013.
- Thai, H.T. and Kim, S.E. (2010), "Free vibration of laminated composite plates using two variable refined plate theory", Int. J. Mech. Sci., 52(4), 626-633. https://doi.org/10.1016/j.ijmecsci.2010.01.002.
- Timesli, A. (2020), "Prediction of the critical buckling load of SWCNT reinforced concrete cylindrical shell embedded in an elastic foundation", Comput. Concrete, 26(1), 53-62. https://doi.org/10.12989/CAC.2020.26.1.053.
- Ton-That, H.L., Nguyen-Van, H. and Chau-Dinh, T. (2020), "Nonlinear Bending Analysis of Functionally Graded Plates Using SQ4T Elements based on Twice Interpolation Strategy", J. Appl. Comput. Mech., 6(1), 125-136. https://doi.org/10.22055/JACM.2019.29270.1577.
- Tran, L.V., Abdel Wahab, M. and Niiranen, J. (2018), "A Six-Variable Quasi-3D Model for Static Analysis of Laminated Composite Plates Using Isogeometric Analysis", Lecture Notes in Civil Engineering., 135-142. https://doi.org/10.1007/978-981-13-2405-5_11.
- Tran, L.V., Wahab, M.A. and Kim, S.E. (2017), "An isogeometric finite element approach for thermal bending and buckling analyses of laminated composite plates", Compos. Struct., 179, 35-49. https://doi.org/10.1016/j.compstruct.2017.07.056.
- Vinyas, M. (2020), "On frequency response of porous functionally graded magneto-electro-elastic circular and annular plates with different electro-magnetic conditions using HSDT", Compos. Struct., 240, 112044. https://doi.org/10.1016/j.compstruct.2020.112044.
- Yaylaci, M. and Avcar, M. (2020), "Finite element modeling of contact between an elastic layer and two elastic quarter planes", Comput. Concrete, 26(2), 107-114. https://doi.org/10.12989/CAC.2020.26.2.107.
- Yildizdag, M.E., Demirtas, M. and Ergin, A. (2018), "Multipatch discontinuous Galerkin isogeometric analysis of composite laminates", Continuum Mech. Thermodynam., https://doi.org/10.1007/s00161-018-0696-9.
- Zhang, Y.X. and Yang, C.H. (2009), "Recent developments in finite element analysis for laminated composite plates", Compos. Struct., 88(1), 147-157. https://doi.org/10.1016/j.compstruct.2008.02.014.
- Zouatnia, N. and Hadji, L. (2019), "Effect of the micromechanical models on the bending of FGM beam using a new hyperbolic shear deformation theory", Earthq. Struct., 16(2), 177-183. https://doi.org/10.12989/eas.2019.16.2.177.