DOI QR코드

DOI QR Code

The effect of multi-phase-lag and Coriolis acceleration on a fiber-reinforced isotropic thermoelastic medium

  • Alharbi, Amnah M. (Department of Mathematics, College of Science, Taif University) ;
  • Said, Samia M. (Department of Mathematics, Faculty of Science, Zagazig University) ;
  • Othman, Mohamed I.A. (Department of Mathematics, Faculty of Science, Zagazig University)
  • Received : 2020.03.14
  • Accepted : 2021.03.16
  • Published : 2021.04.25

Abstract

The three-phase-lag model, thermoelasticity without energy dissipation (G-N II) theory and thermoelasticity with energy dissipation (G-N III) theory are applied to study the effect of rotation on a fiber-reinforced thermoelastic medium. The exact expressions for the physical quantities were obtained by using the normal mode analysis. The numerical results for the field quantities are given in the physical domain and illustrated graphically in the absence and presence of rotation, Coriolis acceleration as well as reinforcement parameters.

Keywords

References

  1. Abd-Elaziz, E.M., Marin, M. and Othman, M.I.A. (2019), "On the effect of Thomson and initial stress in a thermo- porous elastic solid under G-N electromagnetic theory", Symmetry, 11(3), 413-430. https://doi.org/10.3390/sym11030413.
  2. Afsar, A., Bukhari, S.R., Marin, M. and Ellahi, R. (2019), "Effects of chemical reaction on third-grade MHD fluidflow under the influence of heat and mass transfer with variable reactive index", Heat Transfer Res., 50(11), 1061-1080. https://doi.org/10.1615/HeatTransRes.2018025553.
  3. Bhatti, M.M., Ellahi, R., Zeeshan, A., Marin, M. and Ijaz, N. (2019), "Numerical study of heat transfer and hall current impact on peristaltic population of particle-fluid suspension with compliant wall properties", Modern Phys. Lett. B, 33(35), https://doi.org/10.1142/S0217984919504396.
  4. Bhatti, M.M., Marin, M., Zeeshan, A., Ellahi, R. and Abdelsalam, S.I. (2020), "Swimming of motile gyrotactic micro-organisms and nanoparticles in blood flow through anisotropically tapered arteries", Front. Phys., 8, 1-12. https://doi.org/10.3389/fphy.2020.00095.
  5. Belfield, A.J., Rogers, T.G. and Spencer, A.J.M. (1983), "Stress in elastic plates reinforced by fibre lying in concentric circles", J. Mech. Phys. Solids., 31, 25-54. https://doi.org/10.1016/0022-5096(83)90018-2.
  6. Biot, M.A. (1965), "Mechanics of incremental deformation". Wiley, New York.
  7. Chandrasekharaiah, D. (1998), "Hyperbolic thermoelasticity: a review of recent literature", Appl. Mech. Rev., 51, 705-729. https://doi.org/10.1115/1.3098984.
  8. Green, A. and Lindsay, K. (1972), "Thermoelasticity", J. Elast., 2, 1-7. https://doi.org/10.1007/BF00045689
  9. Green, A. and Naghdi, P. (1991), "A re-examination of the basic postulate of thermo-mechanics", Proc. Royal Soc., 432, 171-194.
  10. Green, A. and Naghdi, P. (1992), "Undamped heat waves in an elastic solid", J. Therm. Stress., 15, 253-264. https://doi.org/10.1080/01495739208946136.
  11. Green, A. and Naghdi, P. (1993), "Thermoelasticity without energy dissipation", J. Elast., 31, 189-208. https://doi.org/10.1007/BF00044969
  12. Lata, P and Singh, S. (2019), "Effect of nonlocal parameter on nonlocal thermoelastic solid due to inclined load", Steel Compos. Struct., 33(1), 123-131. https://doi.org/10.12989/scs.2019.33.1.123.
  13. Lata, P. and Singh, S. (2020), "Thermomechanical inter-actions in a nonlocal thermoelastic model with two tem perature and memory dependent derivatives", Coupled Syst. Mech., 9(5), 397-410. https://doi.org/10.12989/CSM.2020.9.5.397.
  14. Lekhnitskii, S. (1980), "Theory of elasticity of an anisotropic body". Mir Publication, Moskow.
  15. Lord, H.W. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Sol., 15, 299-306. https://doi.org/10.4208/aamm.2013.m428.
  16. Marin, M. (2009), "On the minimum principle for dipolar materials with stretch", Nonlinear Analysis: RWA", Nonlinear Anal-Real, 10(3), 1572-1578. https://doi.org/10.1016/j.nonrwa.2008.02.001
  17. Marin, M., Agarwal, R.P. and Mahmoud, S.R. (2013), "Modeling a microstretch thermoelastic body with two temperatures", Abstract Appl. Anal., 2013, 1-7. https://dx.doi.org/10.1155/2013/583464.
  18. Nowacki, W. (1975), "Dynamic problems of thermo- elasticity", (Eds., P.H. Francis and R.B. Hetnarski), Noordhoff Leyden, 43, 269-282.
  19. Nowacki W. (1978), "Theory of thermoelasticity with applications", Sijthoff and Noordhoof Int., Netherlands.
  20. Othman, M.I.A. (2002), "Lord-Shulman theory under the dependence of the modulus of elasticity on the reference temperature in two dimensional generalized thermo- elasticity", J. Therm. Stress., 25(11), 1027-1045. http://dx.doi.org/10.1080/01495730290074621.
  21. Othman, M.I.A. (2004), "Effect of rotation on plane waves in generalized thermoelasticity with two relaxation times", Int. J. Sol. and Struct., 41(11-12), 2939-2956. http://dx.doi.org/10.1016/j.ijsolstr.2004.01.009.
  22. Othman M.I.A. and Song, Y.Q. (2009), "The effect of rotation on 2-D thermal shock problems for a generalized magneto-thermoelasticity half-space under three theories", Multi. Model. Mater. and Struct., 5(1), 43-58. https://doi.org/10.1108/15736105200900003
  23. Othman, M.I.A. and Said, S.M. (2012), "The effect of rotation on two-dimensional problem of a fibre-rein- forced thermoelastic with one relaxation time", Int. J. Thermophys., 33(2), 160-171. http://dx.doi.org/10.1007/s10765-011-1109-5.
  24. Othman, M.I.A. and Said, S.M. (2014), "2-D problem of magneto-thermoelasticity fiber-reinforced medium under temperature-dependent properties with three-phase-lag theory", Meccanica, 49(5), 1225-1241. http://dx.doi.org/10.1007/s11012-014-9879-z.
  25. Othman, M.I.A., Atwa, Y.S., Jahangir, A. and Khan, A. (2015), "The effect of rotation on plane waves in generalized thermo-micro-stretch elastic solid for a mode-I crack under Green-Naghdi theory", J. Comput. Theor. Nanosci., 12(11), 4987-4997. http://dx.doi.org/10.1166/jctn.2015.4022.
  26. Othman, M.I.A. and Abd-Elaziz, E.M. (2017), "Effect of rotation on a micropolar magneto-thermoelastic medium with dual-phase-lag model under gravitational field", Microsyst. Technol., 23(10), 4979-4987. http://dx.doi.org/10.1007/s00542-017-3295-y.
  27. Othman, M.I.A., Khan, A., Jahangir, R. and Jahangir, A. (2019), "Analysis on plane waves through magneto-thermoelastic microstretch rotating medium with temperature dependent elastic properties", Appl. Math. Model., 65, 535-548. https://doi.org/10.1016/j.apm.2018.08.032.
  28. Othman, M.I.A., Alharbi, A.M. and Al-Autabi, A.M. Kh. (2020a), "Micropolar thermoelastic medium with voids under the effect of rotation concerned with 3PHL model", Geomech. Eng., 21(5), 447-459. https://doi.org/10.12989/gae.2020.21.5.000.
  29. Othman, M.I.A., Abd-Elaziz, E.M. and Mohamed, I.E.A. (2020b), "Dual-phase-lag model on microstretch thermo-elastic medium with diffusion under the influence of gravity and laser pulse", Struct. Eng. Mech., 75(2), 133-144. https://doi.org/10.12989/sem.2020.75.1.001.
  30. Othman, M.I.A. and Atwa, S.Y. (2020), "Effect of pulsed laser heating on 3-D problem of thermoelastic medium with diffusion under Green-Lindsay theory", Steel Compos. Struct., 36(3), 249-259. https://doi.org/10.12989/scs.2020.36.3.249.
  31. Puri, P. and Kulshrestha, P.K. (1976), "Unsteady hydromagnetic boundary layer in a rotating medium", J. Appl. Mech., 43, 205-208. https://doi.org/10.1115/1.3423809
  32. Quintanilla, R. and Racke, R. (2008), "A note on stability in three-phase-lag heat conduction", J. Heat Mass Transfer, 51, 24-29. https://doi.org/10.1016/j.ijheatmasstransfer.2007.04.045.
  33. Roy Choudhuri, S.K. and Debnath, L. (1983), "Magnetoelastic plane waves in infinite rotating media", ASME J. Appl. Mech., 50(2), 283-287. https://doi.org/10.1115/1.3167033.
  34. Roy Choudhuri, S.K. (2007), "On a thermoelastic three-phase-lag model", J. Therm. Stress., 30(3), 231-238. https://doi.org/10.1080/01495730601130919.
  35. Said, S.M. and Othman, M.I.A. (2016), "Wave propagation in a two-temperature fiber-reinforced magneto-thermo-elastic medium with three-phase-lag model", Struct. Eng. Mech., 57(2), 201-220. https://doi.org/10.1080/17455030.2019.1637552.
  36. Said, S.M., Abd-Elaziz, E.M. and Othman, M.I.A. (2020), "Modeling of memory-dependent derivative in a rotating magneto-thermoelastic diffusive medium with variable thermal conductivity", Steel Compos. Struct., 36(6), 617-629. https://doi.org/10.12989/scs.2020.36.6.617.
  37. Schoenberg, M., Censor, D.C. (1973), "Elastic waves in rotating media", Quart. Appl. Math., 31, 115-125. https://doi.org/10.1090/qam/99708
  38. Sheokand, S.K., Kumar, R., Kalkal, K.K. and Deswal, S. (2019), "Propagation of plane waves in an orthotropic magneto-thermo-diffusive rotating halph-space", Struct. Eng. Mech., 72(4), 455-468. https://doi.org/10.12989/sem.2019.72.4.455.
  39. Tzou, D. (1995), "A unified field approach for heat conduction from macro- to micro-scales", ASME J. Heat Transfer, 117, 8-16. https://doi.org/10.1115/1.2822329.
  40. Zenkour, A.M. (2018), "Refined microtemperatures multi-phase-lags theory for plane wave propagation in thermo-elastic medium", Results in Phys., 11, 929-937. https://doi.org/10.1016/j.rinp.2018.10.030.