References
- Abd-Elaziz, E.M., Marin, M. and Othman, M.I.A. (2019), "On the effect of Thomson and initial stress in a thermo- porous elastic solid under G-N electromagnetic theory", Symmetry, 11(3), 413-430. https://doi.org/10.3390/sym11030413.
- Afsar, A., Bukhari, S.R., Marin, M. and Ellahi, R. (2019), "Effects of chemical reaction on third-grade MHD fluidflow under the influence of heat and mass transfer with variable reactive index", Heat Transfer Res., 50(11), 1061-1080. https://doi.org/10.1615/HeatTransRes.2018025553.
- Bhatti, M.M., Ellahi, R., Zeeshan, A., Marin, M. and Ijaz, N. (2019), "Numerical study of heat transfer and hall current impact on peristaltic population of particle-fluid suspension with compliant wall properties", Modern Phys. Lett. B, 33(35), https://doi.org/10.1142/S0217984919504396.
- Bhatti, M.M., Marin, M., Zeeshan, A., Ellahi, R. and Abdelsalam, S.I. (2020), "Swimming of motile gyrotactic micro-organisms and nanoparticles in blood flow through anisotropically tapered arteries", Front. Phys., 8, 1-12. https://doi.org/10.3389/fphy.2020.00095.
- Belfield, A.J., Rogers, T.G. and Spencer, A.J.M. (1983), "Stress in elastic plates reinforced by fibre lying in concentric circles", J. Mech. Phys. Solids., 31, 25-54. https://doi.org/10.1016/0022-5096(83)90018-2.
- Biot, M.A. (1965), "Mechanics of incremental deformation". Wiley, New York.
- Chandrasekharaiah, D. (1998), "Hyperbolic thermoelasticity: a review of recent literature", Appl. Mech. Rev., 51, 705-729. https://doi.org/10.1115/1.3098984.
- Green, A. and Lindsay, K. (1972), "Thermoelasticity", J. Elast., 2, 1-7. https://doi.org/10.1007/BF00045689
- Green, A. and Naghdi, P. (1991), "A re-examination of the basic postulate of thermo-mechanics", Proc. Royal Soc., 432, 171-194.
- Green, A. and Naghdi, P. (1992), "Undamped heat waves in an elastic solid", J. Therm. Stress., 15, 253-264. https://doi.org/10.1080/01495739208946136.
- Green, A. and Naghdi, P. (1993), "Thermoelasticity without energy dissipation", J. Elast., 31, 189-208. https://doi.org/10.1007/BF00044969
- Lata, P and Singh, S. (2019), "Effect of nonlocal parameter on nonlocal thermoelastic solid due to inclined load", Steel Compos. Struct., 33(1), 123-131. https://doi.org/10.12989/scs.2019.33.1.123.
- Lata, P. and Singh, S. (2020), "Thermomechanical inter-actions in a nonlocal thermoelastic model with two tem perature and memory dependent derivatives", Coupled Syst. Mech., 9(5), 397-410. https://doi.org/10.12989/CSM.2020.9.5.397.
- Lekhnitskii, S. (1980), "Theory of elasticity of an anisotropic body". Mir Publication, Moskow.
- Lord, H.W. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Sol., 15, 299-306. https://doi.org/10.4208/aamm.2013.m428.
- Marin, M. (2009), "On the minimum principle for dipolar materials with stretch", Nonlinear Analysis: RWA", Nonlinear Anal-Real, 10(3), 1572-1578. https://doi.org/10.1016/j.nonrwa.2008.02.001
- Marin, M., Agarwal, R.P. and Mahmoud, S.R. (2013), "Modeling a microstretch thermoelastic body with two temperatures", Abstract Appl. Anal., 2013, 1-7. https://dx.doi.org/10.1155/2013/583464.
- Nowacki, W. (1975), "Dynamic problems of thermo- elasticity", (Eds., P.H. Francis and R.B. Hetnarski), Noordhoff Leyden, 43, 269-282.
- Nowacki W. (1978), "Theory of thermoelasticity with applications", Sijthoff and Noordhoof Int., Netherlands.
- Othman, M.I.A. (2002), "Lord-Shulman theory under the dependence of the modulus of elasticity on the reference temperature in two dimensional generalized thermo- elasticity", J. Therm. Stress., 25(11), 1027-1045. http://dx.doi.org/10.1080/01495730290074621.
- Othman, M.I.A. (2004), "Effect of rotation on plane waves in generalized thermoelasticity with two relaxation times", Int. J. Sol. and Struct., 41(11-12), 2939-2956. http://dx.doi.org/10.1016/j.ijsolstr.2004.01.009.
- Othman M.I.A. and Song, Y.Q. (2009), "The effect of rotation on 2-D thermal shock problems for a generalized magneto-thermoelasticity half-space under three theories", Multi. Model. Mater. and Struct., 5(1), 43-58. https://doi.org/10.1108/15736105200900003
- Othman, M.I.A. and Said, S.M. (2012), "The effect of rotation on two-dimensional problem of a fibre-rein- forced thermoelastic with one relaxation time", Int. J. Thermophys., 33(2), 160-171. http://dx.doi.org/10.1007/s10765-011-1109-5.
- Othman, M.I.A. and Said, S.M. (2014), "2-D problem of magneto-thermoelasticity fiber-reinforced medium under temperature-dependent properties with three-phase-lag theory", Meccanica, 49(5), 1225-1241. http://dx.doi.org/10.1007/s11012-014-9879-z.
- Othman, M.I.A., Atwa, Y.S., Jahangir, A. and Khan, A. (2015), "The effect of rotation on plane waves in generalized thermo-micro-stretch elastic solid for a mode-I crack under Green-Naghdi theory", J. Comput. Theor. Nanosci., 12(11), 4987-4997. http://dx.doi.org/10.1166/jctn.2015.4022.
- Othman, M.I.A. and Abd-Elaziz, E.M. (2017), "Effect of rotation on a micropolar magneto-thermoelastic medium with dual-phase-lag model under gravitational field", Microsyst. Technol., 23(10), 4979-4987. http://dx.doi.org/10.1007/s00542-017-3295-y.
- Othman, M.I.A., Khan, A., Jahangir, R. and Jahangir, A. (2019), "Analysis on plane waves through magneto-thermoelastic microstretch rotating medium with temperature dependent elastic properties", Appl. Math. Model., 65, 535-548. https://doi.org/10.1016/j.apm.2018.08.032.
- Othman, M.I.A., Alharbi, A.M. and Al-Autabi, A.M. Kh. (2020a), "Micropolar thermoelastic medium with voids under the effect of rotation concerned with 3PHL model", Geomech. Eng., 21(5), 447-459. https://doi.org/10.12989/gae.2020.21.5.000.
- Othman, M.I.A., Abd-Elaziz, E.M. and Mohamed, I.E.A. (2020b), "Dual-phase-lag model on microstretch thermo-elastic medium with diffusion under the influence of gravity and laser pulse", Struct. Eng. Mech., 75(2), 133-144. https://doi.org/10.12989/sem.2020.75.1.001.
- Othman, M.I.A. and Atwa, S.Y. (2020), "Effect of pulsed laser heating on 3-D problem of thermoelastic medium with diffusion under Green-Lindsay theory", Steel Compos. Struct., 36(3), 249-259. https://doi.org/10.12989/scs.2020.36.3.249.
- Puri, P. and Kulshrestha, P.K. (1976), "Unsteady hydromagnetic boundary layer in a rotating medium", J. Appl. Mech., 43, 205-208. https://doi.org/10.1115/1.3423809
- Quintanilla, R. and Racke, R. (2008), "A note on stability in three-phase-lag heat conduction", J. Heat Mass Transfer, 51, 24-29. https://doi.org/10.1016/j.ijheatmasstransfer.2007.04.045.
- Roy Choudhuri, S.K. and Debnath, L. (1983), "Magnetoelastic plane waves in infinite rotating media", ASME J. Appl. Mech., 50(2), 283-287. https://doi.org/10.1115/1.3167033.
- Roy Choudhuri, S.K. (2007), "On a thermoelastic three-phase-lag model", J. Therm. Stress., 30(3), 231-238. https://doi.org/10.1080/01495730601130919.
- Said, S.M. and Othman, M.I.A. (2016), "Wave propagation in a two-temperature fiber-reinforced magneto-thermo-elastic medium with three-phase-lag model", Struct. Eng. Mech., 57(2), 201-220. https://doi.org/10.1080/17455030.2019.1637552.
- Said, S.M., Abd-Elaziz, E.M. and Othman, M.I.A. (2020), "Modeling of memory-dependent derivative in a rotating magneto-thermoelastic diffusive medium with variable thermal conductivity", Steel Compos. Struct., 36(6), 617-629. https://doi.org/10.12989/scs.2020.36.6.617.
- Schoenberg, M., Censor, D.C. (1973), "Elastic waves in rotating media", Quart. Appl. Math., 31, 115-125. https://doi.org/10.1090/qam/99708
- Sheokand, S.K., Kumar, R., Kalkal, K.K. and Deswal, S. (2019), "Propagation of plane waves in an orthotropic magneto-thermo-diffusive rotating halph-space", Struct. Eng. Mech., 72(4), 455-468. https://doi.org/10.12989/sem.2019.72.4.455.
- Tzou, D. (1995), "A unified field approach for heat conduction from macro- to micro-scales", ASME J. Heat Transfer, 117, 8-16. https://doi.org/10.1115/1.2822329.
- Zenkour, A.M. (2018), "Refined microtemperatures multi-phase-lags theory for plane wave propagation in thermo-elastic medium", Results in Phys., 11, 929-937. https://doi.org/10.1016/j.rinp.2018.10.030.