DOI QR코드

DOI QR Code

Transition Metal Complexes Derived From 2-hydroxy-4-(p-tolyldiazenyl)benzylidene)-2-(p-tolylamino)acetohydrazide Synthesis, Structural Characterization, and Biological Activities

  • Alhakimi, Ahmed N. (Department of Chemistry, College of Science, Qassim University) ;
  • Shakdofa, Mohamad M.E. (Department of Chemistry, College of Science and Arts, Khulais, University of Jeddah) ;
  • Saeed, S. El-Sayed (Department of Chemistry, College of Science, Qassim University) ;
  • Shakdofa, Adel M.E. (Department of Chemistry, Faculty of Science, Menoufia University) ;
  • Al-Fakeh, Maged S. (Department of Chemistry, College of Science, Qassim University) ;
  • Abdu, Ashwaq M. (Department of Chemistry, College of Science, Qassim University) ;
  • Alhagri, Ibrahim A. (Department of Chemistry, College of Science, Qassim University)
  • Received : 2020.12.05
  • Accepted : 2021.01.26
  • Published : 2021.04.20

Abstract

Mononuclear Cu(II), Ni(II), Co(II), Mn(II), Zn(II), Fe(III), Ru(III), and UO2(II) complexes of 2-hydroxy-4-(p-tolyldiazenyl)benzylidene)-2-(p-tolylamino)acetohydrazide (H2L) were prepared by direct method. The ligand and its complexes were isolated in solid state and characterized by analytical techniques such as elemental and thermal analyses, molar conductance, magnetic susceptibility measurements and spectroscopic techniques such as UV-Visible, IR, 1H-NMR and 13C-NMR. The spectral data indicated that the ligand acted as neutral/monobasic bidentate or monobasic/dibasic tridentate ligand bonded to the metal ions through the oxygen atom of ketonic or enolic carbonyl group, azomethine nitrogen atom and deprotonated/protonated phenolic oxygen atom forming either tetragonally distorted octahedral or octahedral. Antimicrobial activities of the ligand and its complexes were evaluated against Escherichia coli, Bacillus subtilis and Aspergillus niger by well diffusion method. The results of antifungal activity showed that the Fe(III) complex (10) exhibited higher antifungal against Aspergillus niger than the other complexes. However, the results of antibacterial activity revealed that Cu(II) complex (4) is the most active against Escherichia coli while the Cu(II) complex (5) and Fe(III) complex (10) exhibited higher antibacterial effect on Bacillus subtilis than the other complexes.

Keywords

References

  1. Fischer, E., Verbindungen des Phenylhydrazins mit den Zuckerarten. 1884, 17, 579.
  2. (a) Barakat, A.; Soliman, S. M.; Ali, M.; Elmarghany, A.; Al-Majid, A. M.; Yousuf, S.; Ul-Haq, Z.; Choudhary, M. I.; El-Faham, A. Inorg. Chim. Acta 2020, 503, 119405. https://doi.org/10.1016/j.ica.2019.119405
  3. (b) Li, Y.; Li, Y.; Liu, X.; Yang, Y.; Lin, D.; Gao, Q. J. Mol. Struct. 2020, 1202, 127229 https://doi.org/10.1016/j.molstruc.2019.127229
  4. (c) Bingul, M.; Ercan, S.; Boga, M. J. Mol. Struct. 2020, 1213, 128202 https://doi.org/10.1016/j.molstruc.2020.128202
  5. (d) Ramya Rajan, M. P.; Rathikha, R.; Nithyabalaji, R.; Sribalan, R. J. Mol. Struct. 2020, 1216, 128297. https://doi.org/10.1016/j.molstruc.2020.128297
  6. Saouli, S.; Selatnia, I.; Zouchoune, B.; Sid, A.; Zendaoui, S. M.; Bensouici, C.; Bendeif, E.-E. J. Mol. Struct. 2020, 1213, 128203. https://doi.org/10.1016/j.molstruc.2020.128203
  7. Dkhar, L.; Banothu, V.; Kaminsky, W.; Kollipara, M. R. J. Organomet. Chem. 2020, 914, 121225. https://doi.org/10.1016/j.jorganchem.2020.121225
  8. Szklarzewicz, J.; Jurowska, A.; Matoga, D.; Kruczala, K.; Kazek, G.; Mordyl, B.; Sapa, J.; Papiez, M. Polyhedron 2020, 185, 114589. https://doi.org/10.1016/j.poly.2020.114589
  9. Sreepriya, R. S.; Kumar, S. S.; V, S.; S, B.; Meena, S. S. J. Mol. Struct. 2020, 1201, 127110. https://doi.org/10.1016/j.molstruc.2019.127110
  10. El-Barasi, N. M.; Miloud, M. M.; El-ajaily, M. M.; Mohapatra, R. K.; Sarangi, A. K.; Das, D.; Mahal, A.; Parhi, P. K.; Pintilie, L.; Barik, S. R.; Amin Bitu, M. N.; Kudrat-E-Zahan, M.; Tabassum, Z.; Al-Resayes, S. I.; Azam, M. J. Saudi Chem. Soc. 2020, 24, 492. https://doi.org/10.1016/j.jscs.2020.04.005
  11. Cinarli, M.; Yuksektepe Ataol, C.; Cinarli, E.; Idil, O. J. Mol. Struct. 2020, 1213, 128152. https://doi.org/10.1016/j.molstruc.2020.128152
  12. Chimmalagi, G. H.; Kendur, U.; Patil, S. M.; Gudasi, K. B.; Frampton, C. S.; Budri, M. B.; Mangannavar, C. V.; Muchchandi, I. S. Appl. Organomet. Chem. 2018, 32, e4337. https://doi.org/10.1002/aoc.4337
  13. Hegde, Ganesh S.; Sandeep P. Netalkar.; and Vidyanand K. Revankar. Applied Organometallic Chemistry, 2019, 33, e4840. https://doi.org/10.1002/aoc.4840
  14. Dehestani, L.; Ahangar, N.; Hashemi, S. M.; Irannejad, H.; Honarchian Masihi, P.; Shakiba, A.; Emami, S. Bio-org. Chem. 2018, 78, 119.
  15. Heydari, R.; Motieiyan, E.; Aliabadi, A.; Abdolmaleki, S.; Ghadermazi, M.; Yarmohammadi, N. Polyhedron 2020, 181, 114477. https://doi.org/10.1016/j.poly.2020.114477
  16. Patel, A. K.; Jadeja, R. N.; Roy, H.; Patel, R. N.; Patel, S. K.; Butcher, R. J.; Cortijo, M.; Herrero, S. Polyhedron 2020, 186, 114624. https://doi.org/10.1016/j.poly.2020.114624
  17. Popiolek, L.; Patrejko, P.; Gawronska-Grzywacz, M.; Biernasiuk, A.; Berecka-Rycerz, A.; Natorska-Chomicka, D.; Piatkowska-Chmiel, I.; Gumieniczek, A.; Dudka, J.; Wujec, M. Biomedicine & Pharmacotherapy 2020, 130, 110526. https://doi.org/10.1016/j.biopha.2020.110526
  18. Benkhaya, S.; M'Rabet, S.; El Harfi, A. Inorg. Chem. Commun. 2020, 115, 107891. https://doi.org/10.1016/j.inoche.2020.107891
  19. Aljamali, N. M.; Habeab, A. A.; Alfatlawi, I. O. Int. J. Chem-inf. Res. 2019, 5, 41.
  20. Benkhaya, S.; M'Rabet, S.; El Harfi, A. Heliyon 2020, 6, e03271. https://doi.org/10.1016/j.heliyon.2020.e03271
  21. (a) Aamoum, A.; Waszkowska, K.; Taboukhat, S.; Plociennik, P.; Bakasse, M.; Boughaleb, Y.; Strzelecki, J.; Korcala, A.; Sofiani, Z.; Zawadzka, A. Optical and Quantum Electronics 2019, 52, 35 https://doi.org/10.1007/s11082-019-2147-7
  22. (b) Abdel-Rahman, L. H.; Abu-Dief, A. M.; Moustafa, H.; Abdel-Mawgoud, A. A. H. Arab. J. Chem. 2020, 13, 649. https://doi.org/10.1016/j.arabjc.2017.07.007
  23. Ghanavatkar, C. W.; Mishra, V. R.; Sekar, N. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 230, 118064. https://doi.org/10.1016/j.saa.2020.118064
  24. Mallikarjuna, N. M.; Keshavayya, J.; Prasanna, B. M.; Praveen, B. M.; Tandon, H. C. J. Bio- and Tribo-Corrosion 2019, 6, 9. https://doi.org/10.1007/s40735-019-0306-9
  25. (a) Alhakimi, A. N. Egypt. J. Chem. 2020, 63, 1509 https://doi.org/10.21608/ejchem.2020.20906.2256
  26. (b) Aly, S. A.; Fathalla, S. K. Arab. J. Chem. 2020, 13, 3735. https://doi.org/10.1016/j.arabjc.2019.12.003
  27. (a) Patel, A. K.; Jadeja, R. N.; Butcher, R. J.; Kesharwani, M. K.; Kastner, J.; Muddassir, M. Polyhedron 2021, 195, 114969 https://doi.org/10.1016/j.poly.2020.114969
  28. (b) Abu-Dief, A. M.; El-Metwaly, N. M.; Alzahrani, S. O.; Bawazeer, A. M.; Shaaban, S.; Adam, M. S. S. J. Mol. Liquids 2021, 322, 114977 https://doi.org/10.1016/j.molliq.2020.114977
  29. (c) Mohamad, A. D. M.; Abualreish, M. J. A.; Abu-Dief, A. M. J. Mol. Liquids 2019, 290, 111162. https://doi.org/10.1016/j.molliq.2019.111162
  30. Traven, V. F.; Cheptsov, D. A.; Mamirgova, Z. Z.; Solovjova, N. P.; Martynenko, V. M.; Dolotov, S. M.; Krayushkin, M. M.; Ivanov, I. V. J. Photochem. Photobiol. B Biol. 2020, n/a.
  31. (a) Said, M. A.; Al-unizi, A.; Al-Mamary, M.; Alzahrani, S.; Lentz, D. Inorg. Chim. Acta 2020, 505, 119434 https://doi.org/10.1016/j.ica.2020.119434
  32. (b) Almasi, M.; Vilkova, M.; Bednarcik, J. Inorg. Chim. Acta 2021, 515, 120064 https://doi.org/10.1016/j.ica.2020.120064
  33. (c) Bera, P.; Aher, A.; Brandao, P.; Manna, S. K.; Bhattacharyya, I.; Pramanik, C.; Mandal, B.; Das, S.; Bera, P. J. Mol. Struct. 2021, 1224, 29015 https://doi.org/10.1016/j.molstruc.2020.129015
  34. (d) Fathi, A. M.; Mandour, H. S.; HassaneAnouar, E. J. Mol. Struct. 2021, 1224, 129263 https://doi.org/10.1016/j.molstruc.2020.129263
  35. (e) Sun, Y.; Lu, Y.; Bian, M.; Yang, Z.; Ma, X.; Liu, W. Eur. J. Med. Chem. 2021, 211, 113098. https://doi.org/10.1016/j.ejmech.2020.113098
  36. Lawrence, M. A. W.; Lorraine, S. C.; Wilson, K.-A.; Wilson, K. Polyhedron 2019, 173, 114111. https://doi.org/10.1016/j.poly.2019.114111
  37. (a) Liu, J. N.; Wu, B. W.; Zhang, B.; Liu, Y. Turk. J. Chem. 2006, 30, 41
  38. (b) Shakdofa, M. M. E.; El-Saied, F. A.; Al-Hakimi, A. N. Main Group Chem. 2012, 11, 189. https://doi.org/10.3233/MGC-2012-0072
  39. (a) Jeffery, G. H.; Bassett, J.; Mendham, J.; Denney, R. C., Vogel's Textbook of Quantitative Chemical Analysis. 5th ed.; John Wiley & Sons Inc: 1989
  40. (b) Svehla, G., Vogel's textbook of macro and semi micro Quantitative inorganic analysis. 5th ed.; Longman Inc.: New York, 1979; p 617.
  41. Shakdofa, M. M. E.; El-Saied, F. A.; Rasras, A. J.; Al-Hakimi, A. N. Appl. Organomet. Chem. 2018, 32, e4376. https://doi.org/10.1002/aoc.4376
  42. Lewis, L.; Wilkins, R. G., Modern Coordination Chemistry. Interscience: New York, 1960.
  43. Boggess, R. K.; Zatko, D. A. J. Chem. Educ. 1975, 52, 649. https://doi.org/10.1021/ed052p649
  44. (a) Collee, J. G.; Mackie, T. J.; McCartney, J. E., Mackie & McCartney practical medical microbiology. 14 ed ed.; Churchill Livingstone: New York, 1996; p 978
  45. (b) Holder, I. A.; Boyce, S. T. Burns 1994, 20, 426. https://doi.org/10.1016/0305-4179(94)90035-3
  46. Zaky, R. R.; Ibrahim, K. M.; Gabr, I. M. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2011, 81, 28.
  47. Geary, W. J. Coord. Chem. Rev. 1971, 7, 81. https://doi.org/10.1016/S0010-8545(00)80009-0
  48. (a) Al-Ne'aimi, M. M.; Al-Khuder, M. M. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 105, 365 https://doi.org/10.1016/j.saa.2012.10.046
  49. (b) Gup, R.; Kirkan, B. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2005, 62, 1188 https://doi.org/10.1016/j.saa.2005.04.015
  50. (c) Maurya, M. R.; Khurana, S.; Schulzke, C.; Rehder, D. Eur. J. Inorg. Chem. 2001, 779.
  51. Bessy Raj, B. N.; Prathapachandra Kurup, M. R.; Suresh, E. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2008, 71, 1253. https://doi.org/10.1016/j.saa.2008.03.025
  52. (a) Hosseini Monfared, H.; Kheirabadi, S.; Asghari Lalami, N.; Mayer, P. Polyhedron 2011, 30, 1375 https://doi.org/10.1016/j.poly.2011.02.005
  53. (b) Bayoumi, A. H.; Alaghaz, M. A. A. N.; Aljahdali, M. S. Int. J. Electrochem. Sci. 2013, 8, 9399.
  54. Azam, M.; Al-Resayes, S. I.; Pallepogu, R.; Firdaus, F.; Shakir, M. J. Saudi Chem. Soc. 2016, 20, 120. https://doi.org/10.1016/j.jscs.2015.11.005
  55. (a) Kurtoglu, M.; Ispir, E.; Kurtoglu, N.; Serin, S. Dyes Pigm. 2008, 77, 75 https://doi.org/10.1016/j.dyepig.2007.03.010
  56. (b) Aly, S. A.; Fathalla, S. K. Arab. J. Chem. 2020.
  57. Mohamad M. E. Shakdofa; El-tabl, A. S.; Al-hakimi, A. S.; Wahba, M. A.; Morsy, N. Ponte 2017, 73, 52.
  58. Han, H. O.; Kim, S. H.; Kim, K. H.; Hur, G. C.; Joo Yim, H.; Chung, H. K.; Ho Woo, S.; Dong Koo, K.; Lee, C. S.; Sung Koh, J.; Tae Kim, G. Bioorg. Med. Chem. Lett. 2007, 17, 937. https://doi.org/10.1016/j.bmcl.2006.11.050
  59. Andrew, F. P.; Ajibade, P. A. J. Mol. Struct. 2018, 1170, 24. https://doi.org/10.1016/j.molstruc.2018.05.068
  60. Xu, G. C.; Zhang, L.; Liu, L.; Liu, G. F.; Jia, D. Z. Polyhedron 2008, 27, 12. https://doi.org/10.1016/j.poly.2007.08.045
  61. Samanta, B.; Chakraborty, J.; Shit, S.; Batten, S. R.; Jensen, P.; Masuda, J. D.; Mitra, S. Inorg. Chim. Acta 2007, 360, 2471. https://doi.org/10.1016/j.ica.2006.12.019
  62. Bhosale, J. D.; Shirolkar, A. R.; Pete, U. D.; Zade, C. M.; Mahajan, D. P.; Hadole, C. D.; Pawar, S. D.; Patil, U. D.; Dabur, R.; Bendre, R. S. J. Pharm. Res. 2013, 7, 582. https://doi.org/10.1016/j.jopr.2013.07.022
  63. Singh, B.; Srivastava, P. Transition Met. Chem. 1987, 12, 475. https://doi.org/10.1007/BF01171669
  64. El-Wahab, Z. H. A.; Mashaly, M. M.; Salman, A. A.; El-Shetary, B. A.; Faheim, A. A. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2004, 60, 2861. https://doi.org/10.1016/j.saa.2004.01.021
  65. (a) Chandra, S.; Gupta, L. K. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2005, 61, 1181 https://doi.org/10.1016/j.saa.2004.06.039
  66. (b) Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B, 6th ed.; John Wiley & Sons INC: USA, 2009
  67. (c) El-Tabl, A. S.; Shakdofa, M. M. E.; Shakdofa, A. M. E., J. Serb. Chem. Soc. 2013, 78, 39. https://doi.org/10.2298/JSC110307062E
  68. Gupta, L. K.; Bansal, U.; Chandra, S. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2007, 66, 972. https://doi.org/10.1016/j.saa.2006.04.035
  69. El-Dissouky, A.; Fahmy, A.; Amer, A. Inorg. Chim. Acta 1987, 133, 311. https://doi.org/10.1016/S0020-1693(00)87785-3
  70. Fouda, M. F. R.; Abd-Elzaher, M. M.; Shakdofa, M. M.; El-Saied, F. A.; Ayad, M. I.; El Tabl, A. S. J. Coord. Chem. 2008, 61, 1983. https://doi.org/10.1080/00958970701795714
  71. (a) Al-Hakimi, A. N.; Shakdofa, M. M. E.; El-Seidy, A. M. A.; El-Tabl, A. S. J. Korean Chem. Soc. 2011, 55, 418 https://doi.org/10.5012/jkcs.2011.55.3.418
  72. (b) Al-Hazmi, G. A. A.; Metwally, N. E. Arab. J. Chem. 2017, 10, S1003. https://doi.org/10.1016/j.arabjc.2013.01.002
  73. Shakdofa, M. M.; Al-Hakimi, A. N.; Elsaied, F. A.; Alasbahi, S. O.; Alkwlini, A. M. Bull. Chem. Soc. Ethiop. 2017, 31, 75. https://doi.org/10.4314/bcse.v31i1.7
  74. Rageh, N. M.; Mawgoud, A. M. A.; Mostafa, H. M. Chem. Pap. 1999, 53, 107.
  75. Gup, R.; Giziroglu, E.; Kirkan, B. Dyes Pigm. 2007, 73, 40. https://doi.org/10.1016/j.dyepig.2005.10.005
  76. (a) El-Tabl, A. S.; Aly, F. A.; Shakdofa, M. M. E.; Shakdofa, A. M. E. J. Coord. Chem. 2010, 63, 700 https://doi.org/10.1080/00958970903545099
  77. (b) Lever, A. B. P., Inorganic electronic spectroscopy. Elsevier science: Amsterdam 1984.
  78. El-Tabl, A. S.; Shakdofa, M. M. E.; Labib, A. A.; Al-Hakimi, A. N. Main Group Chem. 2012, 11, 311. https://doi.org/10.3233/MGC-120083
  79. Krishnapriya, K. R.; Kandaswamy, M. Polyhedron 2005, 24, 113. https://doi.org/10.1016/j.poly.2004.10.010
  80. (a) El-Tabl, A. S.; El-Enein, S. A. J. Coord. Chem. 2004, 57, 281 https://doi.org/10.1080/00958970410001664938
  81. (b) Graham, B.; Spiccia, L.; Skelton, B. W.; White, A. H.; Hockless, D. C. R. Inorg. Chim. Acta 2005, 358, 3974. https://doi.org/10.1016/j.ica.2005.06.053
  82. Tiliakos, M.; Cordopatis, P.; Terzis, A.; P. Raptopoulou, C.; Perlepes, S. P.; Manessi-Zoupa, E. Polyhedron 2001, 20, 2203. https://doi.org/10.1016/S0277-5387(01)00818-X
  83. (a) Venkatachalam, G.; Ramesh, R. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2005, 61, 2081 https://doi.org/10.1016/j.saa.2004.08.008
  84. (b) Viswanathamurthi, P.; Dharmaraj, N.; Anuradha, S.; Natarajan, K. Transition Met. Chem. 1998, 23, 337 https://doi.org/10.1023/A:1006953224166
  85. (c) Karvembu, R.; Jayabalakrishnan, C.; Natarajan, K. Transition Met. Chem. 2002, 27, 574. https://doi.org/10.1023/A:1019877128146
  86. Gandhi, J. B.; Kulkarni, N. D. Transition Met. Chem. 2001, 26, 96. https://doi.org/10.1023/A:1007133413114
  87. (a) Creaven, B. S.; Duff, B.; Egan, D. A.; Kavanagh, K.; Rosair, G.; Thangella, V. R.; Walsh, M. Inorg. Chim. Acta 2010, 363, 4048 https://doi.org/10.1016/j.ica.2010.08.009
  88. (b) Tumer, M.; Köksal, H.; Sener, M. K.; Serin, S. Transition Met. Chem. 1999, 24, 414 https://doi.org/10.1023/A:1006973823926
  89. (c) Tweedy, B. G. Phytopathology 1964, 55, 910.