References
- Amer, A.M. and Awad, A.A. (1974), "Permeability of cohesionless soils", J. Geotech. Geoenviron. Eng., 100(12), 1309-1316. https://doi.org/10.1061/AJGEB6.0000134.
- ASTM (2017), Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils, ASTM International, West Conshohocken, Pennsylvania, U.S.A.
- Bernabe, Y., Li, M. and Maineult, A. (2010), "Permeability and pore connectivity: A new model based on network simulations", J. Geophys. Res. Solid Earth, 115(1), 46-52. https://doi.org/10.1029/2010JB007444.
- Blackwell, P.S., Ringrose-Voase, A.J. and Jayawardane, N.S. (1990), "The use of air-filled porosity and intrinsic permeability to air to characterize structure of macropore space and saturated hydraulic conductivity of clay soils", J. Soil Sci., 41 (2), 215-228. https://doi.org/10.1111/j.1365-2389.1990.tb00058.x.
- Carman, P.C. (1937), "Fluid flow through a granular bed", Trans. Inst. Chem. Eng., 15, 150-156.
- Coop, M.R. (2015), "Limitations of a critical state framework applied to the behavior of natural and 'transitional' soils", Proceedings of the 6th International Symposium on Deformation Characteristics of Geomaterials, Buenos Aires, Argentina, November.
- Courtney, D., Sumi, S. and Deborah, J.R. (2017), "Geotechnical properties of polymer-amended tailings solvent recovery unit (TSRU) oil sands tailings", Can. Geotech. J., 54(9), 1331-139. https://doi.org/10.1139/cgj-2016-0028.
- Cui, D.S., Xiang, W., Cao, L.J. and Liu, Q.B. (2010), "Experimental study on reducing thickness of adsorbed water layer for red clay", Chin. J. Geotech. Eng., 32(6), 944-949. https://doi.org/10.4081/bam.2014.1.21.
- Das, B.M. (2019), Advanced Soil Mechanics, CRC Press.
- Daouadji, A., Hicher, P.Y. and Rahma, A. (2001), "An elastoplastic model for granular materials taking into account grain breakage", Eur. J. Mech. A. Solids, 20(1), 113-137. https://doi.org/10.1016/S0997-7538(00)01130-X.
- Einav, I. (2007), "Breakage mechanics-part I: Theory", J. Mech. Phys. Sol., 55(6), 1274-1297. https://doi.org/10.1016/j.jmps.2006.11.003.
- Erzsebet, T., Tamas, G. and Weiszburg, J.T. (2010), "Submicroscopic accessory minerals overprinting clay mineral REE patterns (celadonite-glauconite group examples)", Chem. Geol., 269(3-4), 312-328. https://doi.org/10.1016/j.chemgeo.2009.10.006.
- Gerard, P., Harrington, J., Charlier, R. and Collin, F., (2014), "Modelling of localized gas preferential pathways in claystone", Int. J. Rock Mech. Min. Sci., 67, 104-114. https://doi.org/10.1016/j.ijrmms.2014.01.009.
- Gomes, L.E.D.O., Correa, L.B., Sa, F., Neto, R.R. and Bernardino, A.F. (2017), "The impacts of the Samarco mine tailing spill on the Rio Doce estuary, Eastern Brazil", Mar. Pollut. Bull., 120(1-2), 28-36. https://doi.org/10.1016/j.marpolbul.2017.04.056.
- Glotov, V.E., Chlachula, J., Glotova, L.P. and Little, E. (2018), "Causes and environmental impact of the gold-tailings dam failure at Karamken, the Russian Far East", Eng. Geol., 245, 236-247. https://doi.org/10.1016/j.marpolbul.2017.04.056.
- Hardin, B.O. (1985), "Crushing of soil particles", J. Geotech. Eng., 111(10), 1177-1192. https://doi.org/10.1016/0148-9062(86)91168-X.
- Hazen, A. (1911), "Discussion of dams on sand foundations", Trans. Am. Civ. Eng., 73(3), 190-207. https://doi.org/10.1061/TACEAT.0002320
- Hilfer, R. (1991), "Geometric and dielectric characterization of porous media", Phys. Rev. B, 44(1), 60-75. https://doi.org/10.1103/PhysRevB.44.60.
- Horpibulsuk, S., Yangsukkaseam, N., Chinkulkijniwat, A. and Du, Y.J. (2011), "Compressibility and permeability of Bangkok clay compared with kaolinite and bentonite", Appl. Clay Sci., 52(1-2), 150-159. https://doi.org/10.1016/j.clay.2011.02.014.
- James, M., Aubertin, M., Wijewickreme, D. and Wilson, G.W. (2011), "A laboratory investigation of the dynamic properties of tailings", Can. Geotech. J., 48(11), 1587-1600. https://doi.org/10.1139/t11-060.
- Jang, J., Narsilio, G.A. and Santamarina, J.C. (2011), "Hydraulic conductivity in spatially varying media - a pore-scale investigation", Geophys. J. Int., 184(3), 1167-1179. https://doi.org/10.1111/j.1365-246X.2010.04893.x.
- Khoshghalb, A., Russell, A.R. and Yang, H. (2014), "Fractal-based estimation of hydraulic conductivity from soil-water characteristic curves considering hysteresis", Geotech. Lett., 4(1-3), 1-10. https://doi.org/10.1680/geolett.13.00071.
- Kim, B.S., Kato, S. and Park, S.W. (2019), "Experimental approach to estimate strength for compacted geomaterials at low confining pressure", Geomech. Eng., 18(5), 459-469. https://doi.org/10.12989/gae.2019.18.5.459.
- Kozeny, J. (1927), "uber kapillare Leitung des Wassers im Boden", Sitz. Der Wien., 136, 271-306.
- Lambe, T.W. and Whitman, R.V. (1969), Soil Mechanics, John Wiley and Sons, Inc., New York, U.S.A., 281-294.
- Li, W., Coop, M.R., Senetakis, K. and Schnaid, F. (2018), "The mechanics of a silt-sized gold tailing", Eng. Geol., 241, 97-108. https://doi.org/10.1016/j.enggeo.2018.05.014.
- McDowell, G.R., Bolton, M.D. and Robertson, D. (1996), "The fractal crushing of granular materials", J. Mech. Phys. Soil., 44(12), 2079-2101. https://doi.org/10.1016/S0022-5096(96)00058-0.
- Mesri, G. and Olson, R.E. (1971), "Mechanisms controlling the permeability of clays", Clay. Clay. Miner., 19(3), 151-158. https://doi.org/10.1346/CCMN.1971.0190303.
- Pasha, A.Y., Khoshghalb, A., Khalili, N. (2017), "Hysteretic model for the evolution of water retention curve with void ratio", J. Eng. Mech., 143(7), 04017030. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001238.
- Payan, M., Khoshghalb, A., Senetakis, K., Khalili, N. (2016), "Effect of particle shape and validity of Gmax models for sand: A critical review and a new expression", Comput. Geotech., 72, 28-41. https://doi.org/10.1016/j.compgeo.2015.11.003.
- Quang, N.D. and Chai, J.C. (2015), "Permeability of lime- and cement-treated clayey soils", Can. Geotech. J., 52(9), 1-7. https://doi.org/10.1139/cgj-2014-0134.
- Robert, M.K. (2000), "Emerging and future development of selected geosynthetic applications", J. Geotech. Geoenviron Eng., 126(4), 293-306. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:4(293).
- Rocchi, I. and Coop, M.R. (2014), "Experimental accuracy of the initial specific volume", Geotech. Test. J., 37(1), 169-175. https://doi.org/10.1520/GTJ20130047.
- Samarasinghe, A.M., Huang, Y.H. and Drnevich, V.P. (1982), "Permeability and consolidation of normally consolidated soils", J. Geotech. Eng. Div., 108(6), 835-850. https://doi.org/10.1016/0022-1694(82)90165-2.
- Shahnazari, H. and Rezvani, R. (2013), "Effective parameters for the particle breakage of calcareous sands: An experimental study", Eng. Geol., 159, 98-105. https://doi.org/10.1016/j.enggeo.2013.03.005.
- Tavenas, F., Jean, P., Leblond, P. and Lerouell, S. (1983), "The permeability of natural soft soil clays, part II: Permeability characteristics", Can. Geotech. J., 20(4), 645-660. https://doi.org/10.1139/t83-073.
- Taylor, D.W. (1948), Fundamentals of Soil Mechanics, John Wiley and Sons, Inc., New York, U.S.A., 97-123.
- Terzaghi, K., Peck, R.B. and Mesri, G. (1996), Soil Mechanics in Engineering Practice, John Wiley & Sons.
- Ulusoy, U., Yekeler, M. and Hicyilmaz, C. (2003), "Determination of the shape, morphological and wettability properties of quartz and their correlations", Miner. Eng., 16(10), 951-964. https://doi.org/10.1016/j.mineng.2003.07.002.
- Wang, G.J., Sen, T., Bin, H., Kong, X.Y. and Chen, J. (2020), "An experimental study on tailings deposition characteristics and variation of tailings dam saturation line", Geomech. Eng., 23(1), 85-92. https://doi.org/10.12989/gae.2020.23.1.085.
- Zhang, C., Chen, Q., Pan, Z. and Ma, C. (2020), "Mechanical behavior and particle breakage of tailings under high confining pressure", Eng. Geol., 265, 105419. https://doi.org/10.1016/j.enggeo.2019.105419.