DOI QR코드

DOI QR Code

On the effect of void ratio and particle breakage on saturated hydraulic conductivity of tailing materials

  • Ma, Changkun (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences) ;
  • Zhang, Chao (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences) ;
  • Chen, Qinglin (Jiangxi University of Science and Technology) ;
  • Pan, Zhenkai (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences) ;
  • Ma, Lei (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences)
  • Received : 2021.01.11
  • Accepted : 2021.04.07
  • Published : 2021.04.25

Abstract

Particle size of tailings in different areas of dams varies due to sedimentation and separation. Saturated hydraulic conductivity of high-stacked talings materials are seriously affected by void ratio and particle breakage. Conjoined consolidation permeability tests were carried out using a self-developed high-stress permeability and consolidation apparatus. The hydraulic conductivity decreases nonlinearly with the increase of consolidation pressure. The seepage pattern of coarse-particle tailings is channel flow, and the seepage pattern of fine-particle tailings is scattered flow. The change rate of hydraulic conductivity of tailings with different particle sizes under high consolidation pressure tends to be identical. A hydraulic conductivity hysteresis is found in coarse-particle tailings. The hydraulic conductivity hysteresis is more obvious when the water head is lower. A new hydraulic conductivity-void ratio equation was derived by introducing the concept of effective void ratio and breakage index. The equation integrated the hydraulic conductivity equation with different particle sizes over a wide range of consolidation pressures.

Keywords

References

  1. Amer, A.M. and Awad, A.A. (1974), "Permeability of cohesionless soils", J. Geotech. Geoenviron. Eng., 100(12), 1309-1316. https://doi.org/10.1061/AJGEB6.0000134.
  2. ASTM (2017), Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils, ASTM International, West Conshohocken, Pennsylvania, U.S.A.
  3. Bernabe, Y., Li, M. and Maineult, A. (2010), "Permeability and pore connectivity: A new model based on network simulations", J. Geophys. Res. Solid Earth, 115(1), 46-52. https://doi.org/10.1029/2010JB007444.
  4. Blackwell, P.S., Ringrose-Voase, A.J. and Jayawardane, N.S. (1990), "The use of air-filled porosity and intrinsic permeability to air to characterize structure of macropore space and saturated hydraulic conductivity of clay soils", J. Soil Sci., 41 (2), 215-228. https://doi.org/10.1111/j.1365-2389.1990.tb00058.x.
  5. Carman, P.C. (1937), "Fluid flow through a granular bed", Trans. Inst. Chem. Eng., 15, 150-156.
  6. Coop, M.R. (2015), "Limitations of a critical state framework applied to the behavior of natural and 'transitional' soils", Proceedings of the 6th International Symposium on Deformation Characteristics of Geomaterials, Buenos Aires, Argentina, November.
  7. Courtney, D., Sumi, S. and Deborah, J.R. (2017), "Geotechnical properties of polymer-amended tailings solvent recovery unit (TSRU) oil sands tailings", Can. Geotech. J., 54(9), 1331-139. https://doi.org/10.1139/cgj-2016-0028.
  8. Cui, D.S., Xiang, W., Cao, L.J. and Liu, Q.B. (2010), "Experimental study on reducing thickness of adsorbed water layer for red clay", Chin. J. Geotech. Eng., 32(6), 944-949. https://doi.org/10.4081/bam.2014.1.21.
  9. Das, B.M. (2019), Advanced Soil Mechanics, CRC Press.
  10. Daouadji, A., Hicher, P.Y. and Rahma, A. (2001), "An elastoplastic model for granular materials taking into account grain breakage", Eur. J. Mech. A. Solids, 20(1), 113-137. https://doi.org/10.1016/S0997-7538(00)01130-X.
  11. Einav, I. (2007), "Breakage mechanics-part I: Theory", J. Mech. Phys. Sol., 55(6), 1274-1297. https://doi.org/10.1016/j.jmps.2006.11.003.
  12. Erzsebet, T., Tamas, G. and Weiszburg, J.T. (2010), "Submicroscopic accessory minerals overprinting clay mineral REE patterns (celadonite-glauconite group examples)", Chem. Geol., 269(3-4), 312-328. https://doi.org/10.1016/j.chemgeo.2009.10.006.
  13. Gerard, P., Harrington, J., Charlier, R. and Collin, F., (2014), "Modelling of localized gas preferential pathways in claystone", Int. J. Rock Mech. Min. Sci., 67, 104-114. https://doi.org/10.1016/j.ijrmms.2014.01.009.
  14. Gomes, L.E.D.O., Correa, L.B., Sa, F., Neto, R.R. and Bernardino, A.F. (2017), "The impacts of the Samarco mine tailing spill on the Rio Doce estuary, Eastern Brazil", Mar. Pollut. Bull., 120(1-2), 28-36. https://doi.org/10.1016/j.marpolbul.2017.04.056.
  15. Glotov, V.E., Chlachula, J., Glotova, L.P. and Little, E. (2018), "Causes and environmental impact of the gold-tailings dam failure at Karamken, the Russian Far East", Eng. Geol., 245, 236-247. https://doi.org/10.1016/j.marpolbul.2017.04.056.
  16. Hardin, B.O. (1985), "Crushing of soil particles", J. Geotech. Eng., 111(10), 1177-1192. https://doi.org/10.1016/0148-9062(86)91168-X.
  17. Hazen, A. (1911), "Discussion of dams on sand foundations", Trans. Am. Civ. Eng., 73(3), 190-207. https://doi.org/10.1061/TACEAT.0002320
  18. Hilfer, R. (1991), "Geometric and dielectric characterization of porous media", Phys. Rev. B, 44(1), 60-75. https://doi.org/10.1103/PhysRevB.44.60.
  19. Horpibulsuk, S., Yangsukkaseam, N., Chinkulkijniwat, A. and Du, Y.J. (2011), "Compressibility and permeability of Bangkok clay compared with kaolinite and bentonite", Appl. Clay Sci., 52(1-2), 150-159. https://doi.org/10.1016/j.clay.2011.02.014.
  20. James, M., Aubertin, M., Wijewickreme, D. and Wilson, G.W. (2011), "A laboratory investigation of the dynamic properties of tailings", Can. Geotech. J., 48(11), 1587-1600. https://doi.org/10.1139/t11-060.
  21. Jang, J., Narsilio, G.A. and Santamarina, J.C. (2011), "Hydraulic conductivity in spatially varying media - a pore-scale investigation", Geophys. J. Int., 184(3), 1167-1179. https://doi.org/10.1111/j.1365-246X.2010.04893.x.
  22. Khoshghalb, A., Russell, A.R. and Yang, H. (2014), "Fractal-based estimation of hydraulic conductivity from soil-water characteristic curves considering hysteresis", Geotech. Lett., 4(1-3), 1-10. https://doi.org/10.1680/geolett.13.00071.
  23. Kim, B.S., Kato, S. and Park, S.W. (2019), "Experimental approach to estimate strength for compacted geomaterials at low confining pressure", Geomech. Eng., 18(5), 459-469. https://doi.org/10.12989/gae.2019.18.5.459.
  24. Kozeny, J. (1927), "uber kapillare Leitung des Wassers im Boden", Sitz. Der Wien., 136, 271-306.
  25. Lambe, T.W. and Whitman, R.V. (1969), Soil Mechanics, John Wiley and Sons, Inc., New York, U.S.A., 281-294.
  26. Li, W., Coop, M.R., Senetakis, K. and Schnaid, F. (2018), "The mechanics of a silt-sized gold tailing", Eng. Geol., 241, 97-108. https://doi.org/10.1016/j.enggeo.2018.05.014.
  27. McDowell, G.R., Bolton, M.D. and Robertson, D. (1996), "The fractal crushing of granular materials", J. Mech. Phys. Soil., 44(12), 2079-2101. https://doi.org/10.1016/S0022-5096(96)00058-0.
  28. Mesri, G. and Olson, R.E. (1971), "Mechanisms controlling the permeability of clays", Clay. Clay. Miner., 19(3), 151-158. https://doi.org/10.1346/CCMN.1971.0190303.
  29. Pasha, A.Y., Khoshghalb, A., Khalili, N. (2017), "Hysteretic model for the evolution of water retention curve with void ratio", J. Eng. Mech., 143(7), 04017030. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001238.
  30. Payan, M., Khoshghalb, A., Senetakis, K., Khalili, N. (2016), "Effect of particle shape and validity of Gmax models for sand: A critical review and a new expression", Comput. Geotech., 72, 28-41. https://doi.org/10.1016/j.compgeo.2015.11.003.
  31. Quang, N.D. and Chai, J.C. (2015), "Permeability of lime- and cement-treated clayey soils", Can. Geotech. J., 52(9), 1-7. https://doi.org/10.1139/cgj-2014-0134.
  32. Robert, M.K. (2000), "Emerging and future development of selected geosynthetic applications", J. Geotech. Geoenviron Eng., 126(4), 293-306. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:4(293).
  33. Rocchi, I. and Coop, M.R. (2014), "Experimental accuracy of the initial specific volume", Geotech. Test. J., 37(1), 169-175. https://doi.org/10.1520/GTJ20130047.
  34. Samarasinghe, A.M., Huang, Y.H. and Drnevich, V.P. (1982), "Permeability and consolidation of normally consolidated soils", J. Geotech. Eng. Div., 108(6), 835-850. https://doi.org/10.1016/0022-1694(82)90165-2.
  35. Shahnazari, H. and Rezvani, R. (2013), "Effective parameters for the particle breakage of calcareous sands: An experimental study", Eng. Geol., 159, 98-105. https://doi.org/10.1016/j.enggeo.2013.03.005.
  36. Tavenas, F., Jean, P., Leblond, P. and Lerouell, S. (1983), "The permeability of natural soft soil clays, part II: Permeability characteristics", Can. Geotech. J., 20(4), 645-660. https://doi.org/10.1139/t83-073.
  37. Taylor, D.W. (1948), Fundamentals of Soil Mechanics, John Wiley and Sons, Inc., New York, U.S.A., 97-123.
  38. Terzaghi, K., Peck, R.B. and Mesri, G. (1996), Soil Mechanics in Engineering Practice, John Wiley & Sons.
  39. Ulusoy, U., Yekeler, M. and Hicyilmaz, C. (2003), "Determination of the shape, morphological and wettability properties of quartz and their correlations", Miner. Eng., 16(10), 951-964. https://doi.org/10.1016/j.mineng.2003.07.002.
  40. Wang, G.J., Sen, T., Bin, H., Kong, X.Y. and Chen, J. (2020), "An experimental study on tailings deposition characteristics and variation of tailings dam saturation line", Geomech. Eng., 23(1), 85-92. https://doi.org/10.12989/gae.2020.23.1.085.
  41. Zhang, C., Chen, Q., Pan, Z. and Ma, C. (2020), "Mechanical behavior and particle breakage of tailings under high confining pressure", Eng. Geol., 265, 105419. https://doi.org/10.1016/j.enggeo.2019.105419.