References
- Aggelis, D.G. (2011), "Classification of cracking mode in concrete by acoustic emission parameters", Mech. Res. Commun., 38(3), 153-157. https://doi.org/10.1016/j.mechrescom.2011.03.007.
- Brace, W.F., Paulding, B.W. and Scholz, C. (1966), "Dilatancy in the fracture of crystalline rocks", J. Geophys. Res., 71(16), 3939-3953. https://doi.org/10.1029/jz071i016p03939.
- Chen, Y. and Irfan, M. (2018), "Experimental study of Kaiser effect under cyclic compression and tension tests", Geomech. Eng., 14(2), 203-209. http://doi.org/10.12989/gae.2018.14.2.203.
- Cheon, D.S., Jung, Y.B., Park, E.S., Song, W.K. and Jang, H.I. (2011), "Evaluation of damage level for rock slopes using acoustic emission technique with waveguides", Eng. Geol., 121(1-2), 75-88. https://doi.org/10.1016/j.enggeo.2011.04.015.
- Diederichs, M.S., Kaiser, P.K. and Eberhardt, E. (2004), "Damage initiation and propagation in hard rock during tunnelling and the influence of near-face stress rotation", Int. J. Rock Mech. Min. Sci., 41(5), 785-812. https://doi.org/10.1016/j.ijrmms.2004.02.003.
- Elbatanouny, M.K., Larosche, A., Mazzoleni, P., Ziehl, P.H., Matta, F. and Zappa, E. (2014), "Identification of cracking mechanisms in scaled FRP reinforced concrete beams using acoustic emission", Exp. Mech., 54(1), 69-82. https://doi.org/10.1007/s11340-012-9692-3.
- Ferreira, M.R.P., Carvalho, F.D.A.T.D. and Simoes, E.C. (2016), "Kernel-based hard clustering methods with kernelization of the metric and automatic weighting of the variables", Pattern Recogn., 51, 310-321. https://doi.org/10.1016/j.patcog.2015.09.025.
- Frohlich, C. and Davis, S.D. (1990), "Single-link cluster analysis as a method to evaluate spatial and temporal properties of earthquake catalogues", Geophys. J. Int., 100(1), 19-32. https://doi.org/10.1111/j.1365-246X.1990.tb04564.x.
- Gordon, A.D. (1999), Classification, 2nd Edition, Chapman & Hall, Boca Raton, Florida, U.S.A.
- Hirata, T., Satoh, T. and Ito, K. (1987), "Fractal structure of spatial distribution of microfracturing in rock", Geophys. J. Int., 90(2), 369-374. https://doi.org/10.1111/j.1365-246X.1987.tb00732.x.
- Jain, A.K., Murty, M.N. and Flynn, P.J. (1999), "Data clustering: A review", ACM Comput. Surv., 31, 233-264. https://doi.org/10.1145/331499.331504.
- Karser, J. (1950), "A study of acoustic emission phenomena in tensile tests", Technische Hochschule Munchen, Munich, Germany.
- Kim, J.S., Lee, K.S., Cho, W.J., Choi, H.J. and Cho, G.C. (2015), "A comparative evaluation of stress-strain and acoustic emission methods for quantitative damage assessments of brittle rock", Rock Mech. Rock Eng., 48, 495-508. https://doi.org/10.1007/s00603-014-0590-0.
- Kim, J., Kim, G., Baik, M., Finsterle, S. and Cho, G. (2019), "A new approach for quantitative damage assessment of in-situ rock mass by acoustic emission", Geomech. Eng., 18(1), 11-20. http://doi.org/10.12989/gae.2019.18.1.011.
- Kong, X., Wang, E., He, X., Li, D. and Liu, Q. (2017), "Time-varying multifractal of acoustic emission about coal samples subjected to uniaxial compression", Chaos Soliton Fract., 103, 571-577. https://doi.org/10.1016/j.chaos.2017.07.015.
- Lei, X., Masuda, K., Nishizawa, O., Jouniaux, L., Liu, L., Ma, W., Satoh, T. and Kusunose, K. (2004), "Detailed analysis of acoustic emission activity during catastrophic fracture of faults in rock", J. Struct. Geol., 26(2), 247-258. https://doi.org/10.1016/S0191-8141(03)00095-6.
- Li, Y.H., Liu, J.P., Zhao, X.D. and Yang, Y.J. (2010), "Experimental studies of the change of spatial correlation length of acoustic emission events during rock fracture process", Int. J. Rock Mech. Min. Sci., 47(8), 1254-1262. https://doi.org/10.1016/j.ijrmms.2010.08.002.
- Morgan, S.P., Johnson, C.A. and Einstein, H.H. (2013), "Cracking processes in barre granite: Fracture process zones and crack coalescence", Int. J. Fract., 180(2), 177-204. https://doi.org/10.1007/s10704-013-9810-y.
- Ohnaka, M. and Mogi, K. (1982), "Frequency characteristics of acoustic emission in rocks under uniaxial compression and its relation to the fracturing process to failure", J. Geophys. Res. Sol. Ea., 87(B5), 3873-3884. https://doi.org/10.1029/JB087iB05p03873.
- Prikryl, R., Lokajicek, T., Li, C. and Rudajev, V. (2003), "Acoustic emission characteristics and failure of uniaxially stressed granitic rocks: The effect of rock fabric", Rock Mech. Rock Eng., 36(4), 255-270. https://doi.org/10.1007/s00603-003-0051-7.
- Read, M.D., Ayling, M.R., Meredith, P.G. and Murrell, S.A.F. (1995), "Microcracking during triaxial deformation of porous rocks monitored by changes in rock physical properties, II. Pore volumometry and acoustic emission measurements on water-saturated rocks", Tectonophysics, 245(3-4), 223-235. https://doi.org/10.1016/0040-1951(94)00236-3.
- Rodriguez, P. and Celestino, T.B. (2019), "Application of acoustic emission monitoring and signal analysis to the qualitative and quantitative characterization of the fracturing process in rocks", Eng. Fract. Mech., 210, 54-69. https://doi.org/10.1016/j.engfracmech.2018.06.027.
- Scholtz, C.H. (1968), "The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes", B. Seismol. Soc. Am., 58(1), 399-415. https://doi.org/10.1109/IGARSS.2013.6723499.
- Shannon, C.E. (1948), "A mathematical theory of communication", Bell Syst. Tech. J., 27(3), 379-423. https://doi.org/10.1002/j.1538-7305.1948.tb00917.x.
- Shiotani, T., Ohtsu, M. and Ikeda, K. (2001), "Detection and evaluation of AE waves due to rock deformation", Constr. Build. Mater., 15(5-6), 235-246. https://doi.org/10.1016/S0950-0618(00)00073-8.
- Tyupkin, Y.S. and Giovambattista, R.D. (2005), "Correlation length as an indicator of critical point behavior prior to a large earthquake", Earth Planet Sc. Lett., 230(1-2), 85-96. https://doi.org/10.1016/j.epsl.2004.10.037.
- Xu, R. and Wunusch, D.I.I. (2005), "Survey of clustering algorithms", IEEE Trans. Neural Netw., 16, 645-678. https://doi.org/10.1109/TNN.2005.845141.
- Zhang, Z.H. and Deng, J.H. (2020), "A new method for determining the crack classification criterion in acoustic emission parameter analysis", Int. J. Rock Mech. Min. Sci., 130, 104323. https://doi.org/10.1016/j.ijrmms.2020.104323.
- Zhang, Z., Wang, E. and Li, N. (2017), "Temporal and spatial characteristics of coal-mine microseism based on single-link cluster", Geosci. J., 21(2), 223-233. https://doi.org/10.1007/s12303-016-0038-5.
- Zoller, G., Hainzl, S. and Kurths, J. (2001), "Observation of growing correlation length as an indicator for critical point behavior prior to large earthquakes", J. Geophys. Res. Sol. Ea., 106(B2), 2167-2175. https://doi.org/10.1029/2000JB900379.