DOI QR코드

DOI QR Code

Shear strength behaviour of coral gravelly sand subjected to monotonic and cyclic loading

  • Received : 2020.10.08
  • Accepted : 2021.03.27
  • Published : 2021.04.25

Abstract

The paper presents an experimental study on the strength behaviour of a coral gravelly sand from Vietnam subjected to monotonic and cyclic loading. A series of direct shear tests were carried out to investigate the shear strength behaviour and the factors affecting the shear strength of the sand such as relative density, cyclic load, amplitude of the cyclic load and loading rate. The study results indicate that the shear strength parameters of the coral gravelly sand include not only internal friction angle but also apparent cohesion. These parameters vary with the relative density, cyclic load, the amplitude of the cyclic load and loading rate. The shear strength increases with the increase of the relative density. The shear strength increases after subjecting to cyclic loading. The amplitude of the cyclic load affects the shear strength of coral gravelly sand, the shear strength increases as the amplitude of the cyclic load increases. The loading rate has insignificantly effect on the shear strength of the coral gravelly sand.

Keywords

References

  1. ASTM Standard D 2487-00 (2016), Standard Practice for Classification of Soil for Engineering Purposes (Unified Soil Classification System), Annual Book of ASTM Standards, ASTM International, West Conshohocken, Pennsylvania, U.S.A.
  2. Brandes, H.G. (2011), "Simple shear behavior of calcareous and quartz sands", Geotech. Geol. Eng., 29, 113-126. https://doi.org/10.1007/s10706-010-9357-x.
  3. Cerato, A.B. and Lutenegger, A.J. (2011), "Specimen size and scale effects of direct shear box tests of sands", Geotech. Test. J., 29(6), 507-516. https://doi.org/10.1520/GTJ100312.
  4. Chengjie, Z., Peidong, L.U. and Yanghong, W. (2013), "Experiment study on physical properties and motional characteristics of coral sand", Proceedings of the 7th International Conference on Asian and Pacific Coasts (APAC 2013), Bali, Indonesia, September.
  5. Coop, M.R., Sorensen, K.K., Bodas F.T. and Georgoutsos, G. (2004), "Particle breakage during shearing of a carbonate sand", Geotechnique, 54(3), 157-163. https://doi.org/10.1680/geot.2004.54.3.157.
  6. Dehnavi, Y., Shahnazari, H., Salehzadeh, H. and Rezvani, R. (2010), "Compressibility and undrained behavior of Hormuz calcareous sand", Electron. J. Geotech. Eng., 15, 1684-1702.
  7. Goual, I., Goual, M.S., Taibi, S. and Bekr, N.A. (2011), "Behaviour of unsaturated tuff- calcareous sand mixture on drying-wetting and triaxial paths", Geomech. Eng., 3(4), 267-284. http://doi.org/10.12989/gae.2011.3.4.267.
  8. Hassanlourad, M., Salehzadeh, H. and Shahnazari, H. (2008), "Dilation and breakage effects on the shear strength of calcareous sands based on energy aspects", Int. J. Civ. Eng., 6(2), 108-119.
  9. Hyodo, M., Aramaki, N., Itoh, M. and Hyde, A.F.L. (1996), "Cyclic strength and deformation of crushable carbonate sand", Soil Dyn. Earthq. Eng., 15(5), 331-336, https://doi.org/10.1016/0267-7261(96)00003-6.
  10. Ismail, M.A. (2002), "Performance of an offshore stabilised calcareous soils", Ground Improv., 6(4), 175-186, https://doi.org/10.1680/GRIM.2002.6.4.175.
  11. Morsy, A.M., Salem, M.A and Elmamlouk, H.H. (2019), "Evaluation of dynamic properties of calcareous sands in Egypt at small and medium shear strain ranges", Soil Dyn. Earthq. Eng., 116, 692-708, https://doi.org/10.1016/j.soildyn.2018.09.030.
  12. Murff, J.D. (1987), "Pile capacity in calcareous sands; State of the art", J. Geotech. Eng., 113(5), 490-570. https://doi.org/10.1061/(ASCE)0733-9410(1987)113:5(490).
  13. Park, T.W, Kim, H.J., Tanvir, M.T., Lee, J.B. and Moon, S.G. (2018), "Influence of coarse particles on the physical properties and quick undrained shear strength of fine-grained soils", Geomech. Eng., 14(1), 99-105. http://doi.org/10.12989/gae.2018.14.1.099.
  14. Qureshi, M.U., Bessaih, N., Al-Sadrani, K., Al-Falahi, S. and Al-Mandhari, A. (2014), "Shear strength of Omani sand treated with biopolymer", Proceedings of the 7th International Congress on Environmental Geotechnics, Melbourne, Australia, November.
  15. Rezvani, R. (2019), "Shearing response of geotextile-reinforced calcareous soils using monotonic triaxial tests", Mar. Georesour. Geotec., 38(2), 238-249. https://doi.org/10.1080/1064119X.2019.1566936.
  16. Salem, M., Elmamlouk, H. and Agaiby, S. (2013), "Static and cyclic behavior of North Coast calcareous sand in Egypt", Soil Dyn. Earthq. Eng., 55, 83-91. https://doi.org/10.1016/j.soildyn.2013.09.001.
  17. Shahnazari, H. and Rezvani, R. (2013), "Effective parameters for the particle breakage of calcareous sands: An experimental study", Eng. Geol., 159, 98-105. https://doi.org/10.1016/j.enggeo.2013.03.005.
  18. Shahnazari, H., Rezvani, R. and Tutunchian, M.A. (2019), "Post-cyclic volumetric strain of calcareous sand using hollow cylindrical torsional shear tests", Soil Dyn. Earthq. Eng., 124, 162-171, https://doi.org/10.1016/j.soildyn.2019.05.030.
  19. Shi, J., Haegeman, W. and Andries, J. (2020), "Investigation on the mechanical properties of a calcareous sand: The role of the initial fabric", Mar. Georesour. Geotec., 1-17. https://doi.org/10.1080/1064119X.2020.1775327.
  20. Vu, A.T. and Matsumoto, T. (2019), "Numerical analysis on behaviours of winged monopile subjected to cyclic loading in a calcareous ground", Proceedings of the 1st Vietnam Symposium on Advances in Offshore Engineering, Hanoi, Vietnam, November.
  21. Vu, A.T., Matsumoto, T., Kobayashi S. and Shimono, S. (2017), "Experimental study on pile foundations having batter piles subjected to combination of vertical and horizontal loading at 1-g field", Geotech. Eng. J. SEAGS AGSSEA, 48(3), 12-24.
  22. Wang, X.Z., Wang, X., Jin, Z.C., Meng, Q.S., Zhu, C.Q. and Wang, R. (2016), "Shear characteristics of calcareous gravelly soil", B. Eng. Geol. Environ., 76, 561-573. https://doi.org/10.1007/s10064-016-0978-z.
  23. Wang, X.Z., Wang, X., Jin, Z.C., Zhu, C.Q., Wang, R. and Meng, Q. S. (2017), "Investigation of engineering characteristics of calcareous soils from fringing reef", Ocean Eng., 134, 77-86. https://doi.org/10.1016/j.oceaneng.2017.02.019.
  24. Wei, H., Zhao, T., He, J., Zhu, Meng, Q. and Wang, X. (2018), "Evolution of particle breakages for calcareous sands during ring shear tests", Int. J. Geomech., 18(2), 04017153. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001073.
  25. Wu, P., Matsushima, K. and Tatsuoka, F. (2008), "Effects of specimen size and some other factors on the strength and deformation of granular soil in direct shear tests", Geotech. Test. J., 31(1), 45-64, https://doi.org/10.1520/GTJ100773.
  26. Yap, H.T. (2012), Coral Reef Ecosystem, in Encyclopedia of Sustainability Science and Technology, Springer, New York, U.S.A., 2489-2509.