DOI QR코드

DOI QR Code

Experimental Demonstration of Micro LED-to-LED Visible Light Communications

Micro LED-to-LED 무선 가시광 통신의 실험적 증명

  • 권동윤 (경성대학교 전자공학과) ;
  • 김성만 (경성대학교 전자공학과)
  • Received : 2021.01.16
  • Accepted : 2021.04.17
  • Published : 2021.04.30

Abstract

LED-to-LED VLC is a technology that uses LEDs as both a transmitter and a receiver unlike the typical VLCs. In this paper, we experimentally demonstrate a micro LED-to-LED VLC using Micro LED. We tested all the possible VLC cases using red, yellow, green, blue, and white color LED as both a transmitter and a receiver, and measured rise time and SNR. Then we calculated channel capacity depending on the LED color sets. Our experimental results show that the best channel capacity is 125 kbps when the transmitter micro LED was blue and the receiver LED was green. We also measured BERs of VLCs using OFDM signal, and we showed a successful micro LED-to-LED VLC upto 250 kbps.

LED-to-LED VLC(: Visible Light Communications) 기술은 기존의 VLC 기술과 달리 송신부와 수신부를 모두 LED로 사용한 기술이다. 본 논문에서는 Micro LED를 송신부로 사용한 Micro LED-to-LED VLC 기술을 연구하였다. Red, Yellow, Green, Blue, White 색상의 송/수신부 LED에 따라 통신 시스템의 상승 시간과 신호 대 잡음비를 측정하여 채널 용량을 비교하였다. 본 실험 결과에 따르면, 송신부 Micro LED가 Blue이고 수신부 LED가 Green일 때에 통신 시스템 중에서 가장 좋은 결과인 125 kbps의 채널 용량을 갖는 것을 확인하였다. 또한, OFDM(: Orthogonal Frequency Division Multiplexing) 신호를 사용하여 비트 에러율을 확인한 결과, 250 kbps까지는 통신이 가능함을 실험적으로 확인하였다.

Keywords

References

  1. S. Kim and H. Lee, "Half-duplex visible light communication using an LED as both a transmitter and a receiver," Int. J. of Communication Systems, vol. 29, no. 12, 2016, pp. 1889-1895. https://doi.org/10.1002/dac.2921
  2. H. Jung and S. Kim, "A Full-Duplex LED-to-LED Visible Light Communication System," Electronics, vol. 9, no. 10, 2020, pp. 1713. https://doi.org/10.3390/electronics9101713
  3. H. Hass, L. Yin, Y. Wang, and C. Chen, "What is LiFi?," J. of Lightwave Technology, vol. 34, no. 6, 2016, pp. 1533-1544. https://doi.org/10.1109/JLT.2015.2510021
  4. S. Kim and S. Kim, "Wireless visible light communication technology using optical beamforming," Optical Engineering, vol. 52, no. 10, 2013, paper 106101.
  5. R. Bian, I. Tavakkolnia, and H. Hass, "15.73Gb/s Visible Light Communication with Off-the-Shelf LEDs," J. of Lightwave Technology, vol. 37, no. 10, 2019, pp. 2418-2424. https://doi.org/10.1109/jlt.2019.2906464
  6. S. Kim and H. Lee, "Visible light communication based on space-division multiple access optical beamforming," Chinese Optics Letters, vol. 12, no. 12, 2014, pp. 120601-120601. https://doi.org/10.3788/COL201412.120601
  7. R. Martinek, L. Danys, and R. Jaros, "Visible Light Communication System Based on Software Defined Radio: Performance Study of Intelligent Transportation and Indoor Applications," Electronics, vol. 8, no. 4, 2019, pp. 433. https://doi.org/10.3390/electronics8040433
  8. R. A. M. Ciro, F. E. L. Giraldo, A. F. B. Perez, and M. L. Rivera, "Characterization of Light-To-Frequency Converter for Visible Light Communication Systems," Electronics, vol. 7, no. 9, 2018, pp. 165. https://doi.org/10.3390/electronics7090165
  9. H. Q. Tran and C. Ha, "Fingerprint-Based Indoor Positioning System Using Visible Light Communication-A Novel Method for Multipath Reflections," Electronics, vol. 8, no. 1, 2019, pp. 63. https://doi.org/10.3390/electronics8010063
  10. K. Cui, G. Chen, Z. Xu, and R. D. Roberts. "Traffic light to vehicle visible light communication channel characterization," Applied Optics, vol. 51, no. 27, 2012, pp. 6594-6605. https://doi.org/10.1364/AO.51.006594
  11. B. M. Masini, A. Bazzi, and A. Zanella, "Vehicular visible light networks with full duplex communications," 2017 5th IEEE Int. Conf. on Models and Technologies for Intelligent Transportation Systems (MT-ITS), Naples, Italy, 2017, pp. 98-103.
  12. J. Kim and S. Hong, "An Efficient Candidate Activation Pattern Set Generation Scheme for GSM in Optical Wireless Communication with High Interference Environment," J. of the Korea Institute of Electronic Communication Science, vol. 14, no. 5, 2019, pp. 863-870.
  13. J. Kim and W. Lee, "An User-aware system using Visible Light Communication," J. of the Korea Institute of Electronic Communication Science, vol. 14, no. 4, 2019, pp. 715-722. https://doi.org/10.13067/JKIECS.2019.14.4.715
  14. R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G, Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O'Brien, and M. D. Dawson, "High Bandwidth GaN-Based Micro-LEDs for Multi-Gb/s Visible Light Communications," IEEE Photonics Technology Letters, vol. 28, no. 19, Oct. 2016, pp. 2023-2026. https://doi.org/10.1109/LPT.2016.2581318
  15. M. S. Islim, R. X. Ferreira, X. He, E. Xie, S. Videv, S. Viola, S. Watson, N. Bamiedakis, R. V. Penty, I. H. White, A. E. Kelly, E. Gu, H. Hass, and M. D. Dawson, "Towards 10Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED," Photonics Research, vol. 5, no. 2, Apr. 2017, pp. A35-A43. https://doi.org/10.1364/PRJ.5.000A35