References
- Shang P, Li W, Liu G, et al. Identification of lncRNAs and genes responsible for fatness and fatty acid composition traits between the Tibetan and Yorkshire pigs. Int J Genom 2019; 2019:5070975. https://doi.org/10.1155/2019/5070975
- Tang Q, Gu Y, Zhou X, et al. Comparative transcriptomics of 5 high-altitude vertebrates and their low-altitude relatives. Gigascience 2017;6:gix105. https://doi.org/10.1093/gigascience/gix105
- Dong K, Yao N, Pu Y, et al. Genomic scan reveals loci under altitude adaptation in Tibetan and Dahe pigs. PLoS One 2014; 9:e110520. https://doi.org/10.1371/journal.pone.0110520
- Ai H, Yang B, Li J, Xie X, Chen H, Ren J. Population history and genomic signatures for high-altitude adaptation in Tibetan pigs. BMC Genomics 2014;15:834. https://doi.org/10.1186/1471-2164-15-834
- Zhang B, Chamba Y, Shang P, et al. Comparative transcriptomic and proteomic analyses provide insights into the key genes involved in high-altitude adaptation in the Tibetan pig. Sci Rep 2017;7:3654. https://doi.org/10.1038/s41598-017-03976-3
- Ma YF, Han XM, Huang CP, et al. Population genomics analysis revealed origin and high-altitude adaptation of Tibetan pigs. Sci Rep 2019;9:11463. https://doi.org/10.1038/s41598-019-47711-6
- Shang P, Wang Z, Chamba Y, Zhang B, Zhang H, Wu C. A comparison of prenatal muscle transcriptome and proteome profiles between pigs with divergent growth phenotypes. J Cell Biochem 2019;120:5277-86. https://doi.org/10.1002/jcb.27802
- Gan M, Shen L, Fan Y, et al. High altitude adaptability and meat quality in Tibetan pigs: a reference for local pork processing and genetic improvement. Animals 2019;9:1080. https://doi.org/10.3390/ani9121080
- Wang K, Yang K, Xu Q, et al. Protein expression profiles in Meishan and Duroc sows during mid-gestation reveal differences affecting uterine capacity, endometrial receptivity, and the maternal-fetal interface. BMC Genomics 2019;20:991. https://doi.org/10.1186/s12864-019-6353-2
- Ai H, Fang X, Yang B, et al. Adaptation and possible ancient interspecies introgression in pigs identified by whole-genome sequencing. Nat Genet 2015;47:217-25. https://doi.org/10.1038/ng.3199
- Anders S, Pyl PT, Huber W. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics 2015;31:166-9. https://doi.org/10.1093/bioinformatics/btu638
- Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014;15:550. https://doi.org/10.1186/s13059-014-0550-8
- Raudvere U, Kolberg L, Kuzmin I, et al. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res 2019;47:W191-8. https://doi.org/10.1093/nar/gkz369
- Obrochta KM, Krois CR, Campos B, Napoli JL. Insulin regulates retinol dehydrogenase expression and all-trans-retinoic acid biosynthesis through FoxO1. J Biol Chem 2015;290:7259-68. https://doi.org/10.1074/jbc.M114.609313
- Herrera-Marcos LV, Lou-Bonafonte JM, Martinez-Gracia MV, Arnal C, Navarro MA, Osada J. Prenylcysteine oxidase 1, a pro-oxidant enzyme of low density lipoproteins. Front Biosci 2018;23:1020-37. https://doi.org/10.2741/4631
- Han L, Huang C, Zhang S. The RNA-binding protein SORBS2 suppresses hepatocellular carcinoma tumourigenesis and metastasis by stabilizing RORA mRNA. Liver Int 2019;39: 2190-203. https://doi.org/10.1111/liv.14202
- Orlicky DJ, Libby AE, Bales ES, et al. Perilipin-2 promotes obesity and progressive fatty liver disease in mice through mechanistically distinct hepatocyte and extra-hepatocyte actions. J Physiol 2019;597:1565-84. https://doi.org/10.1113/JP277140
- Marciniak S, Wnorowski A, Smolinska K, et al. Kynurenic acid protects against thioacetamide-induced liver injury in rats. Anal Cell Pathol 2018;2018:1270483. https://doi.org/10.1155/2018/1270483
- Li T, Feng R, Zhao C, et al. Dimethylarginine dimethylaminohydrolase 1 protects against high-fat diet-induced hepatic steatosis and insulin resistance in mice. Antioxid Redox Signal 2017;26:598-609. http://doi.org/10.1089/ars.2016.6742
- Beall CM. Two routes to functional adaptation: Tibetan and Andean high-altitude natives. Proc Natl Acad Sci USA 2007; 104(Suppl 1):8655-60. https://doi.org/10.1073/pnas.0701985104
- Murray AJ, Montgomery HE, Feelisch M, Grocott MPW, Martin DS. Metabolic adjustment to high-altitude hypoxia: from genetic signals to physiological implications. Biochem Soc Trans 2018;46:599-607. https://doi.org/10.1042/BST20170502
- Horscroft JA, Murray AJ. Skeletal muscle energy metabolism in environmental hypoxia: climbing towards consensus. Extrem Physiol Med 2014;3:19. https://doi.org/10.1186/2046-7648-3-19
- Holden JE, Stone CK, Clark CM, et al. Enhanced cardiac metabolism of plasma glucose in high-altitude natives: adaptation against chronic hypoxia. J Appl Physiol 1995;79:222-8. https://doi.org/10.1152/jappl.1995.79.1.222
- Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab 2006; 3:187-97. https://doi.org/10.1016/j.cmet.2006.01.012
- Kim J, Tchernyshyov I, Semenza GL, Dang CV. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 2006;3:177-85. https://doi.org/10.1016/j.cmet.2006.02.002
- Levett DZH, Vigano A, Capitanio D, et al. Changes in muscle proteomics in the course of the Caudwell research expedition to Mt. Everest. Proteomics 2015;15:160-71. https://doi.org/10.1002/pmic.201400306