References
- Carriquiry MA, Du X, Timilsina GR. Second generation biofuels: economics and policies. Energy Policy 2011;39:4222-34. https://doi.org/10.1016/j.enpol.2011.04.036
- Kim SC, Kang SH, Choi EY, et al. Cloning and characterization of an endoglucanase gene from Actinomyces sp. Korean native goat 40. Asian-Australas J Anim Sci 2016;29:126-33. https://doi.org/10.5713/ajas.15.0616
- Lim SY, Seo J, Choi H, et al. Metagenome analysis of protein domain collocation within cellulase genes of goat rumen microbes. Asian-Australas J Anim Sci 2013;26:1144-51. https://doi.org/10.5713/ajas.2013.13219
- Hansen CK. Fibronectin type III-like sequences and a new domain type in prokaryotic depolymerases with insoluble substrates. FEBS Lett 1992;305:91-6. https://doi.org/10.1016/0014-5793(92)80871-D
- Perrakis A, Ouzounis C, Wilson KS. Evolution of immunoglobulin-like modules in chitinases: their structural flexibility and functional implications. Fold Des 1997;2:291-4. https://doi.org/10.1016/S1359-0278(97)00040-0
- Campbell ID, Spitzfaden C. Building proteins with fibronectin type III modules. Structure 1994;2:333-7. https://doi.org/10.1016/S0969-2126(00)00034-4
- Kataeva IA, Seidel RD, Shah A, West LT, Li XL, Ljungdahl LG. The fibronectin type 3-like repeat from the Clostridium thermocellum cellobiohydrolase CbhA promotes hydrolysis of cellulose by modifying its surface. Appl Environ Microbiol 2002;68:4292-300. https://doi.org/10.1128/AEM.68.9.4292-4300.2002
- Okano H, Kanaya E, Ozaki M, Angkawidjaja C, Kanaya S. Structure, activity, and stability of metagenome-derived glycoside hydrolase family 9 endoglucanase with an N-terminal Ig-like domain. Protein Sci 2015;24:408-19. https://doi.org/10.1002/pro.2632
- Younesi FS, Pazhang M, Najavand S, et al. Deleting the Ig-like domain of Alicyclobacillus acidocaldarius endoglucanase Cel9A causes a simultaneous increase in the activity and stability. Mol Biotechnol 2016;58:12-21. https://doi.org/10.1007/s12033-015-9900-3
- Kataeva IA, Uversky VN, Brewer JM, et al. Interactions between immunoglobulin-like and catalytic modules in Clostridium thermocellum cellulosomal cellobiohydrolase CbhA. Protein Eng Des Sel 2004;17:759-69. https://doi.org/10.1093/protein/gzh094
- Do TH, Le NG, Dao TK, et al. Metagenomic insights into lignocellulose-degrading genes through Illumina-based de novo sequencing of the microbiome in Vietnamese native goats' rumen. J Gen Appl Microbiol 2018;64:108-16. https://doi.org/10.2323/jgam.2017.08.004
- Do TH, Dao TK, Nguyen KHV, et al. Metagenomic analysis of bacterial community structure and diversity of lignocellulolytic bacteria in Vietnamese native goat rumen. Asian-Australas J Anim Sci 2018;31:738-47. https://doi.org/10.5713/ajas.17.0174
- Lin H, Chen W, Ding H. AcalPred: a sequence-based tool for discriminating between acidic and alkaline enzymes. PLoS One 2013;8:e75726. https://doi.org/10.1371/journal.pone.0075726
- Nguyen KHV, Nguyen TT, Truong NH, Do TH. Application of bioinformatic tools for prediction of active pH and temperature stability of endoglucanases based on coding sequences from metagenomic DNA data. Biol Forum 2019;11:14-20.
- Coughlan LM, Cotter PD, Hill C, Alvarez-Ordonez A. Biotechnological applications of functional metagenomics in the food and pharmaceutical industries. Front Microbiol 2015;6:672. https://doi.org/10.3389/fmicb.2015.00672
- Kosugi A, Amano Y, Murashima K, Doi RH. Hydrophilic domains of scaffolding protein CbpA promote glycosyl hydrolase activity and localization of cellulosomes to the cell surface of Clostridium cellulovorans. J Bacteriol 2004;186: 6351-9. https://doi.org/10.1128/JB.186.19.6351-6359.2004
- Belaich A, Parsiegla G, Gal L, Villard C, Haser R, Belaich JP. Cel9M, a new family 9 cellulase of the Clostridium cellulolyticum cellulosome. J Bacteriol 2002;184:1378-84. https://doi.org/10.1128/JB.184.5.1378-1384.2002
- Ravachol J, Borne R, Tardif C, de Philip P, Fierobe HP. Characterization of all family-9 glycoside hydrolases synthesized by the cellulosome-producing bacterium Clostridium cellulolyticum. J Biol Chem 2014;289:7335-48. https://doi.org/10.1074/jbc.M113.545046
- Liu H, Pereira JH, Adams PD, Sapra R, Simmons BA, Sale KL. Molecular simulations provide new insights into the role of the accessory immunoglobulin-like domain of Cel9A. FEBS Lett 2010;584:3431-5. https://doi.org/10.1016/j.febslet.2010.06.041
- Taylor LE, Henrissat B, Coutinho PM, Ekborg NA, Hutcheson SW, Weiner RM. Complete cellulase system in the marine bacterium Saccharophagus degradans strain 2-40T. J Bacteriol 2006;188:3849-61. https://doi.org/10.1128/JB.01348-05
- Ruiz DM, Turowski VR, Murakami MT. Effects of the linker region on the structure and function of modular GH5 cellulases. Sci Rep 2016;6:28504. https://doi.org/10.1038/srep28504
- Aspeborg H, Coutinho PM, Wang Y, Brumer H, Henrissat B. Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5). BMC Evol Biol 2012;12:186. https://doi.org/10.1186/1471-2148-12-186
- Chiriac AI, Cadena EM, Vidal T, Torres AL, Diaz P, Pastor FIJ. Engineering a family 9 processive endoglucanase from Paenibacillus barcinonensis displaying a novel architecture. Appl Microbiol Biotechnol 2010;86:1125-34. https://doi.org/10.1007/s00253-009-2350-8
- Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E. The prokaryotes: vol. 2: ecophysiology and biochemistry. New York, NY, USA: Springer Science & Business Media; 2006.
- Herrera LM, Brana V, Fraguas LF, Castro-Sowinski S. Characterization of the cellulase-secretome produced by the Antarctic bacterium Flavobacterium sp. AUG42. Microbiol Res 2019; 223-5:13-21. https://doi.org/10.1016/j.micres.2019.03.009
- Mingardon F, Bagert JD, Maisonnier C, Trudeau DL, Arnold FH. Comparison of family 9 cellulases from mesophilic and thermophilic bacteria. Appl Environ Microbiol 2011;77:1436-42. https://doi.org/10.1128/AEM.01802-10
- Zhang M, Liu N, Qian C, et al. Phylogenetic and functional analysis of gut microbiota of a fungus-growing higher termite: bacteroidetes from higher termites are a rich source of β-glucosidase genes. Microb Ecol 2014;68:416-25. https://doi.org/10.1007/s00248-014-0388-3
- Zhou W, Irwin DC, Escovar-Kousen J, Wilson DB. Kinetic studies of Thermobifida fusca Cel9A active site mutant enzymes. Biochemistry 2004;43:9655-63. https://doi.org/10.1021/bi049394n
- Kataeva IA, Blum DL, Li XL, Ljungdahl LG. Do domain interactions of glycosyl hydrolases from Clostridium thermocellum contribute to protein thermostability? Protein Eng Des Sel 2001;14:167-72. https://doi.org/10.1093/protein/14.3.167
- Lima MA, Oliveira-Neto M, Kadowaki MAS, et al. Aspergillus niger β-glucosidase has a cellulase-like tadpole molecular shape: insights into Glycoside hydrolase family 3 (GH3) β-glucosidase structure and function. J Biol Chem 2013;288:32991-3005. https://doi.org/10.1074/jbc.M113.479279
Cited by
- The Role of the PFNA Operon of Bifidobacteria in the Recognition of Host’s Immune Signals: Prospects for the Use of the FN3 Protein in the Treatment of COVID-19 vol.22, pp.17, 2021, https://doi.org/10.3390/ijms22179219
- Understanding the Role of Prevotella Genus in the Digestion of Lignocellulose and Other Substrates in Vietnamese Native Goats’ Rumen by Metagenomic Deep Sequencing vol.11, pp.11, 2021, https://doi.org/10.3390/ani11113257