DOI QR코드

DOI QR Code

Reduction of energy demand for UF cross-flow membranes in MBR by sponge ball cleaning

  • Issa, Mohammad (Department of Wastewater Process Engineering, CUTEC Forschungszentrum, Technische Universitat Clausthal) ;
  • Geissen, Sven-Uwe (Chair of Environmental Process Engineering, Department of Environmental Technology, Technische Universitat Berlin) ;
  • Vogelpohl, Alfons
  • 투고 : 2018.09.28
  • 심사 : 2021.04.01
  • 발행 : 2021.03.25

초록

Sponge ball cleaning can generate an abrasion effect, which leads to an attractive increasing in both permeate flux and membrane rejection. The aim of this study was to investigate the influence of the daily sponge ball cleaning (SBC) on the performance of different UF cross-flow membrane modules integrated with a bioreactor. Two 1"-membrane modules and one 1/2"-membrane module were tested. The parameters measured and controlled are temperature, pH, viscosity, particle size, dissolved organic carbon (DOC), total suspended solids (TSS), and permeate flux. The permeate flux could be improved by 60%, for some modules, after 11 days of daily sponge ball cleaning at a transmembrane pressure of 350 kPa and a flow velocity of 4 m/s. Rejection values of all tested modules were improved by 10%. The highest permeate flux of 195 L/㎡.h was achieved using a 1"-membrane module with the aid of its negatively charged membrane material and the daily sponge ball cleaning. In addition, the enhancement in the permeate flux caused by daily sponge ball cleaning improved the energy specific demand for all tested modules. The negatively charged membrane showed the lowest energy specific demand of 1.31 kWh/㎥ in combination with the highest flux, which is a very competitive result.

키워드

참고문헌

  1. Al-amoudi, A. and Lovitt, R.W. (2007), "Fouling strategies and the cleaning system of NF membranes and factors affecting cleaning efficiency", J. Membr. Sci., 303, 4-28. https://doi.org/10.1016/j.memsci.2007.06.002.
  2. Albert, K., Vatai, G., Giorno, L. and Koris, A. (2016), "Energy-saving potential of cross-flow membrane emulsification by ceramic tube membrane with inserted cross-section reducers", Membr. Water Treat., 7(3), 175-191. https://doi.org/10.12989/mwt.2016.7.3.175.
  3. Amy, G. and Cho, J. (1999), "Interactions between natural organic matter (NOM) and membranes: Rejection and fouling", Water Sci. Tech., 40(9), 131-139. https://doi.org/10.1016/S0273-1223(99)00649-6
  4. Ansari, A.J., Hai, F.I., He, T., Price, W.E. and Nghiem, L.D. (2018), "Physical cleaning techniques to control fouling during the pre-concentration of high suspended-solid content solutions for resource recovery by forward osmosis", Desalination, 429, 134-141. https://doi.org/10.1016/j.desal.2017.12.011.
  5. Arimi, M.M., Namango, S.S., Gotz, G., Zhang, Y., Kiriamiti, K. and Geiben, S.U. (2016), "The abrasion effects of natural organic particles on membrane permeability and the size distribution of recalcitrants in a colored effluent", J. Membr. Sci.,509, 1-9. https://doi.org/10.1016/j.memsci.2016.02.052
  6. Baker, R.W. (2012), Membrane Technology and Applications, John Wiley & Sons Ltd., West Sussex, U.K.
  7. Bani-Melhem, K. and Elektorowicz, M. (2011), "Performance of the submerged membrane electro-bioreactor (SMEBR) with iron electrodes for wastewater treatment and fouling reduction", J. Membr. Sci., 379, 434-439. https://doi.org/10.1016/j.memsci.2011.06.017.
  8. Bennoilt, H. and Schuster, C. (2001), "Improvement of separation processes in waste water treatment by controlling the sludge properties", Proceedings of the IWA 2nd World Water Congress, Berlin, Germany, October.
  9. Clarke, M.A. (2003), SYRUPS, in Encyclopedia of Food Sciences and Nutrition.
  10. Cui, Z.F. and Muralidhara, H.S. (2010), Membrane Technology: Applications in Food and Bioprocessing, Butterworth-Heinemann, Oxford, U.K.
  11. Enfrin, M., Lee, J., Le-Clech, P. and Dumee, L.F. (2020), "Kinetic and mechanistic aspects of ultrafiltration membrane fouling by nano- and microplastics", J. Membr. Sci., 601(117890), 1-9. https://doi.org/10.1016/j.memsci.2020.117890.
  12. Esfandian, F., Peyravi, M., Qoreyshi, A.A. and Jahanshahi, M. (2016), "Development of blend membrane by sulfonated polyethersulfone for whey ultrafiltration", Membr. Water Treat., 7(2), 155-173. https://doi.org/10.12989/mwt.2016.7.2.155.
  13. Guo, J., Farid, M.U., Lee, E.J., Yan, D.Y.S., Jeong, S. and An, A.K. (2018), "Fouling behavior of negatively charged PVDF membrane in membrane distillation for removal of antibiotics from wastewater", J. Membr. Sci., 551, 12-19. https://doi.org/10.1016/j.memsci.2018.01.016.
  14. Hasan, S.W., Elektorowicz, M. and Oleszkiewicz, J.A. (2014), "Start-up period investigation of pilot-scale submerged membrane electro-bioreactor (SMEBR) treating raw municipal wastewater", Chemosphere, 97, 71-77. https://doi.org/10.1016/j.chemosphere.2013.11.009.
  15. Hashino, M., Katagiri, T., Kubota, N., Ohmukai, Y., Maruyama, T. and Matsuyama, H. (2011), "Effect of surface roughness of hollow fiber membranes with gear-shaped structure on membrane fouling by sodium alginate", J. Membr. Sci., 366(1-2), 389-397. https://doi.org/10.1016/j.memsci.2010.10.025.
  16. Hosseinzadeh, M., Bidhendi, G.N., Torabian, A., Mehrdadi, N. and Pourabdullah, M. (2015), "A new flat sheet membrane bioreactor hybrid system for advanced treatment of effluent, reverse osmosis pretreatment and fouling mitigation", Bioresource Technol., 192, 177-184. https://doi.org/10.1016/j.biortech.2015.05.066.
  17. Huang, J.H., Guo, S.H., Zeng, G.M., Xiong, Y.L., Zhang, D.M., Tang, X.J. and Xie, G.X. (2012), "Prediction of fouling resistance and permeate flux in cross-flow micellar-enhanced ultrafiltration (MEUF)", Colloid. Surface. A, 401, 81-89. https://doi.org/10.1016/j.colsurfa.2012.03.026.
  18. Jeon, S., Rajabzadeh, S., Okamura, R., Ishigami, T., Hasegawa, S., Kato, N. and Matsuyama, H. (2016), "The effect of membrane material and surface pore size on the fouling properties of submerged membranes", Water, 8(12), 602. https://doi.org/10.3390/w8120602.
  19. Jiang, S., Li, Y. and Ladewig, B.P. (2017), "A review of reverse osmosis membrane fouling and control strategies", Sci. Total Environ., 595, 567-583. https://doi.org/10.1016/j.scitotenv.2017.03.235.
  20. Judd, S. and Judd, C. (2011), The MBR Book: Principles and Applications of Membrane Bioreactors for Water and Wastewater Treatment, Elsevier Ltd., Oxford, U.K.
  21. Khan, S.J., Parveen, F., Ahmad, A., Hashmi, I. and Hankins, N. (2013), "Performance evaluation and bacterial characterization of membrane bioreactors", Bioresource Technol., 141, 2-7. https://doi.org/10.1016/j.biortech.2013.01.140.
  22. Krzeminski, P., van der Graaf, J.H.J.M. and van Lier, J.B. (2012), "Specific energy consumption of membrane bioreactor (MBR) for sewage treatment", Water Sci. Tech., 65(2), 380-392. https://doi.org/10.2166/wst.2012.861.
  23. Krzeminski, P., Leverette, L., Malamis, S. and Katsou, E. (2017), "Membrane bioreactors - A review on recent developments in energy reduction, fouling control, novel configurations, LCA and market prospects", J. Membr. Sci., 527, 207-227. https://doi.org/10.1016/j.memsci.2016.12.010.
  24. Lin, H., Zhang, M., Wang, F., Meng, F., Liao, B.Q., Hong, H., Chen, J. and Gao, W. (2014), "A critical review of extracellular polymeric substances (EPSs) in membrane bioreactors: Characteristics, roles in membrane fouling and control strategies", J. Membr. Sci., 460, 110-125. https://doi.org/10.1016/j.memsci.2014.02.034.
  25. Maaz, M., Yasin, M., Aslam, M., Kumar, G., Atabani, A.E., Idrees, M., Anjum, F., Jamil, F., Ahmad, R., Khan, A.L., Lesage, G., Heran, M. and Kim, J. (2019), "Anaerobic membrane bioreactors for wastewater treatment: Novel configurations, fouling control and energy considerations", Bioresource Technol., 283, 358-372. https://doi.org/10.1016/j.biortech.2019.03.061
  26. Psoch, C. and Schiewer, S. (2006), "Direct filtration of natural and simulated river water with air sparging and sponge ball application for fouling control", Desalination, 197, 190-204. https://doi.org/10.1016/j.desal.2005.11.027.
  27. Shi, X., Tal, G., Hankins, N.P. and Gitis, V. (2014), "Fouling and cleaning of ultrafiltration membranes: A review", J. Water Proc. Eng., 1, 121-138. https://doi.org/10.1016/j.jwpe.2014.04.003.
  28. Urbanowska, A. and Kabsch-Korbutowicz, M. (2016), "Cleaning agents efficiency in cleaning of polymeric and ceramic membranes fouled by natural organic matter", Membr. Water Treat., 7(1), 1-10. https://doi.org/10.12989/mwt.2016.7.1.001.
  29. Wang, Z., Ma, J., Tang, C.Y., Kimura, K., Wang, Q. and Han, X. (2014), "Membrane cleaning in membrane bioreactors: A review", J. Membr. Sci., 468, 276-307. https://doi.org/10.1016/j.memsci.2014.05.060.
  30. Zhang, Q., Victor Tan, G.H. and Stuckey, D.C. (2017), "Optimal biogas sparging strategy, and the correlation between sludge and fouling layer properties in a submerged anaerobic membrane bioreactor (SAnMBR)", Chem. Eng. J., 319, 248-257. https://doi.org/10.1016/j.cej.2017.02.146.
  31. Zhu, X. and Jassby, D. (2019), "Electroactive membranes for water treatment: Enhanced treatment functionalities, energy considerations, and future challenges", Accounts. Chem. Res., 52(5), 1177-1186. https://doi.org/10.1021/acs.accounts.8b00558.