참고문헌
- Abdel-Fatah, M.A., Khater, E., Hafez, A. and Shaaban, A. (2020), "Performance of fouled NF membrane as used for textile dyeing wastewater", Membr. Water Treat., 11(2), 111-121. https://doi.org/10.12989/mwt.2020.11.2.111.
- Agboola, O., Maree, J. and Mbaya, R. (2014), "Characterization and performance of nanofiltration membranes", Environ. Chem. Lett., 12(2), 241-255. https://doi.org/10.1007/s10311-014-0457-3.
- Bargeman, G., Westerink, J.B., Guerra Miguez, O. and Wessling, M. (2014), "The effect of NaCl and glucose concentration on retentions for nanofiltration membranes processing concentrated solutions", Sep. Purif. Technol., 134, 46-57. https://doi.org/10.1016/j.seppur.2014.07.025.
- Fang, J. and Deng, B. (2014), "Arsenic rejection by nanofiltration membranes: Effect of operating parameters and model analysis", Environ. Eng. Sci., 31(9), 496-506. https://doi.org/10.1089/ees.2013.0460.
- Fang, J. and Deng, B. (2014), "Rejection and modeling of arsenate by nanofiltration: Contributions of convection, diffusion and electromigration to arsenic transport", J. Membr. Sci., 453, 42-51. http://doi.org/10.1016/j.memsci.2013.10.056.
- Ferreira Esmi, C., Schrive, L., Barre, Y., Palmeri, J. and Deratani, A. (2013), "Using nanofiltration in a "zero-rejection" process: The removal of Ni2+ and Co2+ from salty wastewater", Desalin. Water Treat., 51(1-3), 476-484. https://doi.org/10.1080/19443994.2012.714526.
- Jadhav, S.V., Marathe, K.V. and Rathod, V.K. (2016), "A pilot scale concurrent removal of fluoride, arsenic, sulfate and nitrate by using nanofiltration: Competing ion interaction and modelling approach", J. Water Proc. Eng., 13, 153-167. http://doi.org/10.1016/j.jwpe.2016.04.008.
- Kaykioglu, G., Ata, R., Tore, G.Y. and Agirgan, A.O. (2017), "Evaluation of effects of textile wastewater on the quality of cotton fabric dye", Membr. Water Treat., 8(1), 1-18. https://doi.org/10.12989/mwt.2017.8.1.001.
- Kheriji, J., Tabassi, D., Bejaoui, I. and Hamrouni, B. (2016), "Boron removal from model water by RO and NF membranes characterized using SK model", Membr. Water Treat., 7(3), 193-207. http://doi.org/10.12989/mwt.2016.7.3.193.
- Khulbe, K., Feng, C., Matsuura, T. and Ismail, A. (2012), "Progresses in membrane and advanced oxidation processes for water treatment", Membr. Water Treat., 3(3), 181-200. https://doi.org/10.12989/mwt.2012.3.3.181.
- Labban, O., Liu, C., Chong, T.H. and Lienhard, V.J.H. (2017), "Fundamentals of low-pressure nanofiltration: Membrane characterization, modeling, and understanding the multi-ionic interactions in water softening", J. Membr. Sci., 521, 18-32. http://doi.org/10.1016/j.memsci.2016.08.062.
- Labbez, C., Fievet, P., Szymczyk, A., Vidonne, A., Foissy, A. and Pagetti, J. (2002), "Analysis of the salt retention of a titania membrane using the "DSPM" model: Effect of pH, salt concentration and nature", J. Membr. Sci., 208(1-2), 315-329. http://doi.org/10.1016/S0376-7388(02)00310-1.
- Labbez, C., Fieve, P., Szymczyk, A., Vidonne, A., Foissy, A. and Pagetti, J. (2003), "Retention of mineral salts by a polyamide nanofiltration membrane", Sep. Purif. Technol., 30(1), 47-55. http://doi.org/10.1016/S1383-5866(02)00107-7.
- Lee, S. and Lueptow, R.M. (2001), "Membrane rejection of nitrogen compounds", Environ. Sci. Tech., 35(14), 3008-3018. https://doi.org/10.1021/es0018724.
- Li, D., Chung, T.S., Ren, J. and Wang, R. (2004), "Thickness dependence of macrovoid evolution in wet phase-inversion asymmetric membranes", Ind. Eng. Chem. Res., 43(6), 1553-1556. https://doi.org/10.1021/ie034264g.
- Perez-Gonzalez, Ibañez, A., R., Gómez, P., Urtiaga, A.M., Ortiz, I. and Irabien, J.A. (2015), "Nanofiltration separation of polyvalent and monovalent anions in desalination brines", J. Membr. Sci., 473, 16-27. https://doi.org/10.1016/j.memsci.2014.08.045.
- Qadir, D., Mukhtar, H. and Keong, L.K. (2017), "Retention of sulfate and chloride ions in commercially available tubular membranes", Membr. Water Treat., 8(4), 369-380. https://doi.org/10.12989/mwt.2017.8.4.369.
- Shahbabaei, M. and Kim, D. (2017), "Molecular simulation study of water transport through aquaporin-inspired pore geometry", J. Mech. Sci. Tech., 31(8), 3845-3851. https://doi.org/10.1007/s12206-017-0729-5.
- Szymczyk, A., Labbez, C., Fievet, P., Vidonne, A., Foissy, A. and Pagetti, J. (2003), "Contribution of convection, diffusion and migration to electrolyte transport through nanofiltration membranes", Adv. Colloid. Interfac., 103(1), 77-94. http://doi.org/10.1016/S0001-8686(02)00094-5.
- Wang, J., Dlamini, D.S., Mishra, A.K., Pendergast, M.T.M., Wong, M.C.Y., Mamba, B.B., Frege,r V., Verliefde, A.R.D. and Hoek, E.M.V. (2014), "A critical review of transport through osmotic membranes", J. Membr. Sci., 454, 516-537. http://doi.org/10.1016/j.memsci.2013.12.034.
- Wang, J., Mo, Y., Mahendra, S. and Hoek, E.M.V. (2014), "Effects of water chemistry on structure and performance of polyamide composite membranes", J. Membr. Sci., 452, 415-425. http://doi.org/10.1016/j.memsci.2013.09.022.
- Wang, L., Dumont, R.S. and Dickson, J.M. (2016), "Molecular dynamic simulations of pressure-driven water transport through polyamide nanofiltration membranes at different membrane densities", RSC Adv., 6(68), 63586-63596. http://doi.org/10.1039/C6RA12115B.