DOI QR코드

DOI QR Code

A Study on Enzyme-induced Carbonate Precipitation Technique for Soil Reinforcement without Releasing an Environmental Contaminant

환경 유해 부산물 누출이 없는 지반 보강용 효소 기반 탄산칼슘 침전 기법 연구

  • Lee, Seung-Hyung (Dept. of Civil and Environmental Engrg., Sejong Univ.) ;
  • Kim, Jong-Min (Dept. of Civil and Environmental Engrg., Sejong Univ.)
  • 이승형 (세종대학교 건설환경공학과) ;
  • 김종민 (세종대학교 건설환경공학과)
  • Received : 2021.04.09
  • Accepted : 2021.04.16
  • Published : 2021.04.30

Abstract

Recently, the enzyme-induced carbonate precipitation (EICP) technique has been considered as one of the alternatives to the cement-based soil reinforcing method. However, the problem with the emission of ammonium ion has not been solved. In this study, an experimental study on the EICP without releasing an environmental contaminant (Ze-EICP) is performed using calcium-exchanged zeolite. The results show that the Ze-EICP using calcium-exchanged zeolite reduced the amount of ammonium ions by 96.96% and precipitated almost the same amount of calcium carbonate, compared to the EICP using calcium chloride. In addition, the Ze-EICP shows higher strength improvement rate than the EICP due to densification of zeolite and cementation of calcium carbonate.

최근 효소 기반 탄산칼슘 침전(EICP) 기법은 시멘트 기반 지반보강공법의 대안 중 하나로 간주되어 왔다. 하지만 EICP 기법에서 발생하는 환경 유해 부산물인 암모늄 이온의 배출에 대한 문제는 해결되지 않고 있다. 따라서 본 연구에서는 칼슘 치환 제올라이트를 사용하여 환경 유해 부산물이 없는 EICP(Ze-EICP)의 실험적 연구를 수행하고자 한다. 실험결과는 칼슘 치환 제올라이트를 사용하는 Ze-EICP가 염화칼슘을 사용하는 EICP와 비교하여 암모늄 이온은 96.96%가 제거되었으며, 거의 동일한 양의 탄산칼슘이 침전되었음을 보여주었다. 또한 Ze-EICP는 제올라이트의 조밀화와 탄산칼슘의 고결화로 인해 EICP 대비 높은 강도증진 효과를 보여주었다.

Keywords

References

  1. Almajed, A., Tirkolaei, H.K., and Kavazanjian Jr., E. (2018), Baseline Investigation on Enzyme-induced Calcium Carbonate Precipitation, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 144, No.11, pp.04018081. https://doi.org/10.1061/(asce)gt.1943-5606.0001973
  2. ASTM D2166 (2005), Standard Test Method for Unconfined Compressive Strength of Cohesive Soils, ASTM D2166, ASTM International, West Conshohocken, PA, USA.
  3. ASTM D2487 (2000), Standard Practice for Classification of Soils for Engineering Purposes (unified soil classification system), ASTM D2487, ASTM International, West Conshohocken, PA, USA.
  4. Ji, Z. Y., Yuan, J. S., and Li, X. G. (2007), Removal of Ammonium from Wastewater Using Calcium form Clinoptilolite, Journal of Hazardous Materials, Vol.141, No.3, pp.483-488. https://doi.org/10.1016/j.jhazmat.2006.07.010
  5. Jorgensen, T.C. and Weatherley, L.R. (2003), Ammonia Removal from Wastewater by Ion Exchange in the Presence of Organic Contaminants, Water Research, Vol.37, No.8, pp.1723-1728. https://doi.org/10.1016/S0043-1354(02)00571-7
  6. Kavazanjian, E. and Hamdan, N. (2015), Enzyme Induced Carbonate Precipitation (EICP) Columns for Ground Improvement, In: IFCEE 2015, American Society of Civil Engineers, Reston, VA, USA, pp. 2252-2261.
  7. Khodadadi, H.T., Kavazanjian, E., van Paassen, L., and Dejong, J. (2017), Bio-grout Materials: A Review, Grouting 2017, July, Honolulu, HI, USA, pp.9-12.
  8. Lee, S. and Kim, J. (2020), An Experimental Study on Enzymatic-induced Carbonate Precipitation Using Yellow Soybeans for Soil Stabilization, KSCE Journal of Civil Engineering, Vol.24, No.7, pp.2026-2037. https://doi.org/10.1007/s12205-020-1659-9
  9. Namati, M. and Voordouw, G. (2003), Modification of Porous Media Permeability, Using Calcium Carbonate Produced Enzymatically in situ, Enzyme and Microbial Technology, Vol.33, pp.635-642. https://doi.org/10.1016/S0141-0229(03)00191-1
  10. Neupane, D., Yasuhara, H., Kinoshita, N., and Unno, T. (2013), Applicability of Enzymatic Calcium Carbonate Precipitation as a Soil-strengthening Technique, Journal of Geotechnical and Geoenvironmental Engineering, Vol.139, No.12, pp.2201-2211. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000959
  11. Neupane, D., Yasuhara, H., Kinoshita, N., and Ando, Y. (2015a), Distribution of Mineralized Carbonate and its Quantification Method in Enzyme Mediated Calcite Precipitation Technique, Soils and Foundations, Vol.55, No.2, pp.447-457. https://doi.org/10.1016/j.sandf.2015.02.018
  12. Neupane, D., Yasuhara, H., Kinoshita, N., and Putra, H. (2015b), Distribution of Grout Material Within 1-m Sand Column in in Situ Calcite Precipitation Technique, Soils and Foundations, Vol.55, No.6, pp.1512-1518. https://doi.org/10.1016/j.sandf.2015.10.015
  13. Oliveira, P.J.V., Freitas, L.D., and Carmona, J.P. (2016), Effect of Soil Type on the Enzymatic Calcium Carbonate Precipitation Process Used for Soil Improvement, Journal of Materials in Civil Engineering, Vol.29, No.4, pp.04016263. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001804
  14. Park, S.S., Choi, S.G., and Nam, I.H. (2012), Development of Soil Binder Using Plant Extracts, Journal of the Korean Geotechnical Society, Vol.28, No.3, pp.67-75. https://doi.org/10.7843/kgs.2012.28.3.67
  15. Phua, Y.J. and Royne, A. (2018), Bio-cementation through Controlled Dissolution and Recrystallization of Calcium Carbonate, Construction and Building Materials, Elsevier Ltd., Vol.167, pp.657-668. https://doi.org/10.1016/j.conbuildmat.2018.02.059
  16. Song, J.Y., Ha, S.J., Jang, J.W., and Yun, T.S. (2020), Analysis of Improved Shear Stiffness and Strength for Sandy Soils Treated by EICP, Journal of the Korean Geotechnical Society, Vol.31, No.1, pp.17-28.
  17. Yasuhara, H., Neupane, D., Hayashi, K., and Okamura, M. (2012), Experiments and Predictions of Physical Properties of Sand Cemented by Enzymatically-induced Carbonate Precipitation, Soils and Foundations, Vol.52, No.3, pp.539-549. https://doi.org/10.1016/j.sandf.2012.05.011
  18. Zhao, Y.P., Gao, T.Y., Jiang, S.Y., and Cao, D.W. (2004), Ammonium Removal by Modified Zeolite from Municipal Wastewater, Journal of Environmental Sciences, Vol.16, No.6, pp.1001-1004. https://doi.org/10.3321/j.issn:1001-0742.2004.06.027