DOI QR코드

DOI QR Code

Zeolite/Zinc-polypeptide를 코팅한 폴리프로필렌필름의 항균 및 항진균 특성에 관한 연구

A Study on the Antibacterial and Antifungal Properties of Zeolite/Zinc-polypeptide Coated Polypropylene Film

  • 이학래 (연세대학교 패키징학과) ;
  • 고의석 (연세대학교 패키징학과) ;
  • 심원철 (연세대학교 패키징학과) ;
  • 김종서 (연세대학교 패키징학과) ;
  • 김재능 (연세대학교 패키징학과)
  • 투고 : 2021.03.16
  • 심사 : 2021.04.26
  • 발행 : 2021.04.29

초록

본 연구는 기능성 항균 포장재를 신선식품에 적용하기 위한 연구로서 Zeolite/Zinc-polypeptide를 식품용 포장재 중 하나인 PP 필름에 코팅하여 항균 및 항진균성을 확인하였다. 이를 검증하기 위하여 Zeolite/Zinc-polypeptide를 PP 필름에 각각 5%, 10%, 15% 농도로 코팅하였으며, FESEM과 FT-IR 분석을 통해 분산된 Zeolite/Zinc-polypeptide의 코팅 여부를 확인하였다. 또한 항균 효과를 검증하기 위하여 대조군과 코팅 물질의 농도에 따른 필름의 항균 및 항진균성을 분석하였다. 코팅 필름의 표면 분석 결과 PP 필름의 표면에서 Zeolite/Zinc-polypeptide의 농도에 따라 코팅 액의 분포 크기가 불규칙하지만 넓게 나타났다. 또한 항균 효과에 따른 분석 결과 박테리아 균 중 하나인 E. coli에서 99.9%의 항균 효과를 확인하였으며, R. oryzae의 성장을 약 70% 억제하여 PP 필름 코팅 적용 후에도 Zeolite/Zinc-polypeptide가 E. coli와 R. oryzae에 대하여 항균 및 항진균 특성을 갖고 있음을 확인하였다. 이에 따라 Zeolite/Zinc-polypeptide 코팅 필름은 기능성 포장재로서 신선식품의 부패 방지와 보관수명 향상에 효과적일 것으로 보이며, 향후 다양한 신선식품에 적용하기 위한 저장 실험이 요구되어진다.

This study is for the application of functional antibacterial packaging to fresh food. Zeolite/Zinc-polypeptide was coated on PP film at concentrations of 5%, 10%, and 15%, degree of dispersion was verified through FESEM and FT-IR analysis. In addition, the antibacterial and antifungal properties of the films were analyzed according to the control group and the concentration of coating materials. As a result, the degree of dispersion of coating material was irregular but wide, depending on the concentration of Zeolite/Zinc-polypeptide on the surface of PP film. The antibacterial effect against E. coli was over 99.9%, and the growth of R. oryzae was inhibited about 70%. Therefore, it was confirmed that Zeolite/Zinc-polypeptide had antibacterial and antifungal properties against E. coli and R. oryzae even after coated on PP film. In conclusion, Zeolite/Zinc-polypeptide coating film is expected to be effective in preventing corruption and improving the shelf life of fresh food as a functional packaging material. In order to be applied to various fresh foods in the future, storage experiments are additionally required with temperature and humidity conditions according to fresh foods.

키워드

참고문헌

  1. Jo, N.H. 2018. Nielsenkorea Trends in the Domestic Fresh Food Market in Korea. etoday. https://www.etoday.co.kr/news/view/1674337
  2. KOSTAT. 2019. Employment Survey by Region: Current Status of Single-person Households (2015-2018). http://kosis.kr/
  3. BGF retail. 2019. CU, 초특가 반값 과일 판매. http://www.bgfretail.com/
  4. Hobson GE. 1981. Enzymes and texture changes during ripening. In:J. Friend and M.J.C. Rhodes (eds). Recent advances in the biochemistry of fruit and vegetables. London, UK. Academic Press. pp. 123-124.
  5. Zhang, H., Zheng, X., Yu, T. 2007. Biological control of postharvest diseases of peach with Cryptococcus laurentii. Journal of Food Control. 18(4): 287-291. https://doi.org/10.1016/j.foodcont.2005.10.007
  6. Fan, Q., and Tian, S.P. 2000. Postharvest biological control of Rhizopus rot of nectarine fruits by Pichia membranefaciens. Journal of Plant Disease. 84(11): 1212-1216. https://doi.org/10.1094/PDIS.2000.84.11.1212
  7. Pitt, J.I., Hocking, A.D. 2009. Fungi and Food Spoilage. Boston. New York. Springer. 519: 388.
  8. Kwon, J.H., Kang, D.W., Ha, J.S., Kim, J.W. and Kwak, Y.S. 2012. Soft rot on peach caused by Rhizopus oryzae in Korea. The Korean Journal of Mycology. 40(1): 65-68. https://doi.org/10.4489/KJM.2012.40.1.065
  9. Shim, W.B., Kim, J.S., Kim, K.Y., Yun, J.C. and Chung, D.H. 2013. Investigation of Microbiological Contamination Levels in Peach farms to Establish Good Agricultural Practices(GAP) Model Based on Hazard Control. Journal of Agriculture & Life Science. 47(5): 61-71. https://doi.org/10.14397/jals.2013.47.6.61
  10. Noh, J.H. 2001. Evaluation of mineral properties for improving value added of domestic zeolite. J. Miner. soc. Korea(Mineral & Industry). 14(1):1-17.
  11. Nam, S.H. and Boo, S.H. 2013. Photocatalytic Activity of ZnO Nanoparticles and Their Stability in Water Solvent. Journal of the Korean Vacuum Society. 22(3): 138-143. https://doi.org/10.5757/JKVS.2013.22.3.138
  12. Zalsoff M. 2002. Antimicrobial peptides of multicellular organisms. Nature. 415 : 389-395. https://doi.org/10.1038/415389a
  13. ASTM E2149-10. 2010. Standard Test Method for Determining the Antimicrobial Activity of Immobilized Antimicrobial Agents Under Dynamic Contact Conditions. ASTM International. West Conshohocken. PA. www.astm.org
  14. Farzana, R., Iqra, P., Shafaq, F., Sumaira, S., Zakia, K., Hunaiza, T. and Husna, M. 2017. Antimicrobial Behavior of Zinc Oxide Nanoparticles and β-Lactam Antibiotics against Pathogenic Bacteria. Archives of clinical microbiology. 8(4):57.
  15. Gao, X., Chen, Y., Chen, Z., Xue, Z., Jia, Y., Ma, Q., Zhang, M. and Chen, H. 2019. Identification and antimicrobial activity evaluation of three peptides from laba garlic and the related mechanism. Journal of Food Function. 10: 4486-4496. https://doi.org/10.1039/C9FO00236G
  16. Do, Y.W., 2007. A Study on the Photodegradation of Air Pollutants Using High Efficiency Photoreactive System. Master Dissertation. Soonchunhyang University, Asan.
  17. Nakatsuji, T. and Gallo R.L., 2012. Antimicrobial peptides: old molecules with new ideas. Journal of Invest Dermatol. 132: 887-895. https://doi.org/10.1038/jid.2011.387
  18. Das, R.K., Brar, S.K. and Verma M. 2015. Effects of Different Matallic Nanoparticles on Germination and Morphology of the Fungus Rhizopus oryzae 1526 and Changes in the Production of Fumaric Acid. BioNanoScience. 5(4): 217-226. https://doi.org/10.1007/s12668-015-0183-8
  19. de Lira Mota, K.S., de Oliveira Lima, F., de Oliveira, W.A., Lima, I.O. and de Oliveira Lima, E. 2012. Antifungal Activity of Thymus vulgaris L. Essential Oil and Its Constituent Phytochemicals against Rhizopus oryzae: Interaction with ergosterol. Molecules. 17(12): 11418-14433.
  20. Ziani, K., Fernandez-Pan, I., Royo, M. and Mate, J.I. 2009. Antifungal activity of films and solutions based on chitosan against typical seed fungi. Journal of Food Hydrocolloids. 23(8): 2309-2314. https://doi.org/10.1016/j.foodhyd.2009.06.005
  21. Baltzer, S.A. and Brown, M.H. 2011. Antimicrobial Peptides - Promising Alternatives to Conventional Antibiotics. Journal of Molecular Microbiology and Biotechnology. 20(4): 228-235. https://doi.org/10.1159/000331009
  22. Gulmine, J.V., Janissek, P.R., Heise, H.M., and Akcelrud, L. 2002. Polyethylene characterization by FTIR. Journal of Polymer Testing. 21(5): 557-563. https://doi.org/10.1016/S0142-9418(01)00124-6
  23. Rajandas, H., Parimannan, S., Sathasivam, K., Ravichandran, M., and Yin, L. S. 2012. A novel FTIR-ATR spectroscopy based technique for the estimation of low-density polyethylene biodegradation. Journal of Polymer Testing. 31(8): 1094-1099. https://doi.org/10.1016/j.polymertesting.2012.07.015
  24. Toledo, R.R., Santoyo, V.R., Sanchez, C.D.M. and Rosales, M.M. 2018. Effect of aluminum precursor on physicochemical properties of Al2O3 by hydrolysis/precipitation method. Journal of Nova Scientia. 10(1): 83-99. https://doi.org/10.21640/ns.v10i20.1217
  25. Sakthisabarimoorthi, A., Dhas, S.A.M.B. and Jose, M. 2018. Electrical impedance spectroscopic investigations of monodispersed SiO2 nanospheres. Journal of Superlattices and Microstructures. 113. 271-282. https://doi.org/10.1016/j.spmi.2017.11.001
  26. Khan, S.H., Suriyaprabha, R., Pathak, B. and Fulekar, M.H. 2015. Photocatalytic degradation of organophosphate pesticides (Chlorpyrifos) using synthesized zinc oxide nanoparticle by membrane filtration reactor under UV irradiation. Frontiers in Nanoscience and Nanotechnology. 1(1): 23-27. https://doi.org/10.15761/FNN.1000105
  27. Yang, J. and He, W. 2012. Synthesis of lauryl grafted sodium alginate and optimization of the reaction conditions. International Journal of biological macromolecules. 50(2): 428-431. https://doi.org/10.1016/j.ijbiomac.2011.12.027
  28. Sistla, Y.S., and Khanna, A. 2015. CO2 Absorption Studies in Amino Acid-Anion Based Ionic Liquids. Journal of Chemical Engineering 273: 268-276. https://doi.org/10.1016/j.cej.2014.09.043
  29. Dias, R.C.M., Goes, A.M., Serakides, R., Ayres, E. and Orefice, R.L. 2010. Porous Biodegradable Polyurethane Nanocomposites: Preparation, Characterization, and Biocompatibility Tests. Journal of Materials Research. 13(2): 211-218. https://doi.org/10.1590/S1516-14392010000200015
  30. Lee, W.S. and Ko, S.H. 2018. A Study on the Functionality and Stability of LDPE-Nano ZnO Composite Film. The Korean Journal of Packaging Science and Technology. 24(1): 27-34. https://doi.org/10.20909/kopast.2018.24.1.27
  31. Reddy, K. M., Feris, K., Bell, J., Wingett, D. G., Hanley, C., and Punnoose, A. 2007. Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Applied Physics Letters. 90(21): 213902. https://doi.org/10.1063/1.2742324
  32. Zhang, L., Jiang, Y., Ding, Y., Povey, M., and York, D. 2007. Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). Journal of Nanoparticle Research. 9(3): 479-489. https://doi.org/10.1007/s11051-006-9150-1
  33. Pollini, M., Russo, M., Licciulli, A., Sannino, A., and Maffezzoli, A. 2009. Characterization of antibacterial silver coated yarns. Journal of Materials Science: Materials in Medicine. 20(11): 2361-2366. https://doi.org/10.1007/s10856-009-3796-z
  34. Higueras, L., Lopez-Carballo, G., Hernandez-Munoz, P., Gavara, R., and Rollini, M. 2013. Development of a novel antimicrobial film based on chitosan with LAE (ethyl-Nα-dodecanoyl-L-arginate) and its application to fresh chicken. International Journal of Food Microbiology. 165(3): 339-345. https://doi.org/10.1016/j.ijfoodmicro.2013.06.003