Improvement of Boiler Performance on 550 MW Coal Fired Thermal Power Plant via Baffle Plates

다공판 연소가스 유량제어를 통한 석탄화력발전소 보일러 성능 개선

  • Kim, Chi Ho (School of Power Engineering, Hanyang University) ;
  • Moon, Seung-Jae (Department of Mechanical Engineering, Hanyang University)
  • 김치호 (한양대학교 파워엔지니어링공학과) ;
  • 문승재 (한양대학교 기계공학부)
  • Received : 2020.08.30
  • Published : 2021.03.31

Abstract

In order to increase power plant efficiency, the steam temperature was increased to 610 ℃ which deteriorates the durability of the boiler tube and as the use of low-calorie coal increases the post combustion and delayed combustion phenomenon, the overheating of the final reheater and the tube rupture are becoming frequent. In order to prevent overheating of the final reheater, desuperheater water injection was increased, leading to a decrease in boiler efficiency. In this study install a baffle plate at the back of some overheated tube groups, thereby reduce the temperature of the tube by reducing the amount of combustion gas, and the reduced combustion gas moves to an adjacent place to increase the temperature of other tubes. As a result of the study, the temperature deviation between tubes decreased 1.5. And the heat-reducing injection amount was reduced to 6,929 kg/h and the maximum tube temperature was reduced to 623.4℃ which is 6.6℃ more below than the control standard of 630℃.

발전소 효율증대로 인해 610℃까지 높아진 증기온도는 보일러 튜브의 내구성을 저하시키고 있으며 여기에 저열량탄 사용증가로 후부연소 및 지연연소 현상이 가중됨에 따라 최종재열기의 과열과 튜브 파열사고가 빈번해지고 있다. 최종 재열기 과열을 방지하고자 과열저감수 주입량이 늘어났으며 이는 보일러 효율저하로 이어지고 있다. 그동안 보일러 튜브온도를 전체가 아닌 튜브 개별적으로 제어하기 위한 노력이 계속되어 왔지만 성공사례가 알려진 바가 없다. 이번 연구에서는 과열된 일부 튜브그룹에 다공판을 설치하여 가스흐름에 저항을 줌으로써 연소가스량을 저감시켜 튜브의 온도를 낮추고 저감된 연소가스는 인접한 곳으로 이동하여 다른 튜브의 온도를 높이는 것이다. 연구결과 튜브간 온도편차가 1.5℃ 감소하였고 과열저감수 주입량이 6,929 kg/h 감소하였으며 튜브 최고온도를 623.4℃까지 경감하였다. 이는 관리기준온도인 630℃에 6.6℃ 여유가 있는 수치이다.

Keywords

References

  1. Korea Power Learning Institute, 2009, Boiler technology, pp. 67-68, pp. 89-93
  2. EPRI, 2007, Boiler and Heat Recovery Steam Generator Tube Failures: Theory and Practice Volume 3: Steam-Touched Tubes, pp. 50-51, pp. 69-74
  3. Bum Shin Kim, Song Gee Wook and Seong Yeon Yoo, 2012, Temperature Prediction Method for Superheater and Reheater Tubes of Fossil Power Plant Boiler During Operation, The Korean Society of Mechanical Engineers A, volume36,pp. 563-569
  4. Yun Min Nam, Bum Shin Kim, 2018, Damage Prediction of Heat Exchanger Tube in Boiler by Combustion Gas Temperature Distribution, The Korean Society of Mechanical Engineers, pp. 51-52
  5. Simkyun Yook, Sungho Kim, Haewon Jung, Changho Cho, 2003, A Study on Operation of Soot Blower for an Optimal Operation of Power Utility Boilers, The Korean Society of Mechanical Engineers, pp. 104-111
  6. KOMIPO, 2009, Construction record, Boryeong Thermal Power Generation #7-8(Volume I), pp. 10-17
  7. KOPEC, 2008, Boryeong Thermal Power Generation #7-8 Operation Guide Book(I), pp. 2-34
  8. Korea Power Learning Institute, 2012, Boiler Operation, pp. 157, pp. 237-239
  9. Yeoung-ji publisher, 2000, Introduction of Statistics, pp. 55
  10. KOMIPO, 2009, Thermal Power and Combined Power Generation Performance Test Guidelines, pp. 74