DOI QR코드

DOI QR Code

Broadband Phase-change Metagrating Design for Efficient Active Reflection Steering

  • Received : 2021.01.25
  • Accepted : 2021.02.24
  • Published : 2021.04.25

Abstract

In this paper, I introduce a novel design method of a high performance nanophotonic beam deflector providing broadband operation, large active tunability, and signal efficiency, simultaneously. By combining thermo-optically tunable vanadium dioxide nano-ridges and a metallic mirror, reconfigurable local optical phase of reflected diffraction beams can be engineered in a desired manner over broad bandwidth. The active metagrating deflectors are systematically designed for tunable deflection of reflection beams according to the thermal phase-change of vanadium dioxide nano-ridges. Moreover, by multiplexing the phase-change supercells, a robust design of actively tunable beam splitter is also verified numerically. It is expected that the proposed intuitive and simple design method would contribute to development of next-generation optical interconnects and spatial light modulators with high performances. The author also envisions that this study would be fruitful for modern holographic displays and three-dimensional depth sensing technologies.

Keywords

References

  1. N. Yu and F. Capasso, "Flat optics with designer metasurfaces," Nature Mater. 13, 139-150 (2014). https://doi.org/10.1038/nmat3839
  2. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, "Light propagation with phase discontinuities: generalized laws of reflection and refraction," Science 334, 333-337 (2011). https://doi.org/10.1126/science.1210713
  3. M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, "Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging," Science 352, 1190-1194 (2016). https://doi.org/10.1126/science.aaf6644
  4. D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, "Dielectric gradient metasurface optical elements," Science 345, 298-302 (2014). https://doi.org/10.1126/science.1253213
  5. D. Lin, M. Melli, E. Poliakov, P. St. Hilaire, S. Dhuey, C. Peroz, S. Cabrini, M. Brongersma, and M. Klug, "Optical metasurfaces for high angle steering at visible wavelengths," Sci. Rep. 7, 2286 (2017). https://doi.org/10.1038/s41598-017-02167-4
  6. G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang "Metasurface holograms reaching 80% efficiency," Nature Nanotechnol. 10, 308-312 (2015). https://doi.org/10.1038/nnano.2015.2
  7. H. Kim, "Metallic triangular pillar grating arrays for high transmission polarizers for air: glass interfaces," Jpn. J. Appl. Phys. 58, 042001 (2019). https://doi.org/10.7567/1347-4065/ab0274
  8. H. Kim, H. An, J. Kim, S. Lee, K. Park, S. Lee, S. Hong, L. A. Vazquez-Zuniga, S.-Y. Lee, B. Lee, and Y. Jeong, "Corrugation-assisted metal-coated angled fiber facet for wavelength-dependent off-axis directional beaming," Opt. Express 25, 8366-8385 (2017). https://doi.org/10.1364/OE.25.008366
  9. C. Lei, Z. Man, and S. Tang, "Extraordinary optical transmission and enhanced magneto-optical Faraday effect in the cascaded double-fishnet structure with periodic rectangular apertures," Curr. Opt. Photon. 4, 134-140 (2020). https://doi.org/10.3807/COPP.2020.4.2.134
  10. J. W. Goodman, Introduction to Fourier optics, 3rd ed., (Roberts and Company Publishers, UK. 2005).
  11. N. I. Zheludev and Y. S. Kivshar, "From metamaterials to metadevices," Nature Mater. 11, 917-924 (2012). https://doi.org/10.1038/nmat3431
  12. S.-J. Kim, H. Yun, S. Choi, J.-G. Yun, K. Park, S. J. Jeong, S.-Y. Lee, Y. Lee, J. Sung, C. Choi, J. Hong, Y. W. Lee, and B. Lee, "Dynamic phase-change metafilm absorber for strong designer modulation of visible light," Nanophoton. 10, 713-725 (2020). https://doi.org/10.1515/nanoph-2020-0264
  13. S.-J. Kim, I. Kim, S. Choi, H. Yoon, C. Kim, Y. Lee, J. Son, Y. W. Lee, J. Rho, and B. Lee, "Reconfigurable all-dielectric Fano metasurfaces for strong intensity modulations of visible light," Nanoscale Horiz. 5, 1088-1095 (2020). https://doi.org/10.1039/D0NH00139B
  14. S.-J. Kim, S. Choi, C. Choi, Y. Lee, J. Sung, H. Yun, J. Jeong, S.-E. Mun, Y. W. Lee, and B. Lee, "Broadband efficient modulation of light transmission with high contrast using reconfigurable VO2 diffraction grating," Opt. Express 26, 34641-34654 (2018). https://doi.org/10.1364/oe.26.034641
  15. S.-J. Kim, H. Yun, K. Park, J. Hong, J.-G. Yun, K. Lee, J. Kim, S. J. Jeong, S.-E. Mun, J. Sung, Y. W. Lee, and B. Lee, "Active directional switching of surface plasmon polaritons using a phase transition material," Sci. Rep. 7, 43723 (2017). https://doi.org/10.1038/srep43723
  16. M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, "Frequency tunable near-infrared metamaterials based on VO2 phase transition," Opt. Express 17, 18330-18339 (2009). https://doi.org/10.1364/OE.17.018330
  17. Y. Kim, P. C. Wu, R. Sokhoyan, K. Mauser, R. Glaudell, G. K. Shirmanesh, and H. A. Atwater, "Phase modulation with electrically tunable vanadium dioxide phase-change metasurfaces," Nano Lett. 19, 3961-3968 (2019). https://doi.org/10.1021/acs.nanolett.9b01246
  18. C. Choi, S.-Y. Lee, S.-E. Mun, G.-Y. Lee, J. Sung, H. Yun, J.-H. Yang, H.-O. Kim, C.-Y. Hwang, and B. Lee, "Metasurface with nanostructured Ge2Sb2Te5 as a platform for broadband-operating wavefront switch," Adv. Opt. Mater. 7, 1900171 (2019). https://doi.org/10.1002/adom.201900171
  19. Q. Wang, E. T. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, "Optically reconfigurable metasurfaces and photonic devices based on phase change materials," Nature Photon. 10, 60-65 (2016). https://doi.org/10.1038/nphoton.2015.247
  20. H. D. Jeong and S. Y. Lee, "Tunable plasmonic absorber using a nanoslit array patterned on a Ge2Sb2Te5-inserted Fabry-Perot resonator," J. Lightwave Technol. 36, 5857-5862 (2018). https://doi.org/10.1109/JLT.2018.2878861
  21. J. Park, S. J. Kim, P. Landreman, and M. L. Brongersma, "An over-coupled phase-change metasurface for efficient reflection phase modulation," Adv. Opt. Mater. 8, 2000745 (2020). https://doi.org/10.1002/adom.202000745
  22. J. Park, J.-H. Kang, X. Liu, and M. L. Brongersma, "Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers," Sci. Rep. 5, 15754 (2015). https://doi.org/10.1038/srep15754
  23. S. Kim, M. S. Jang, V. W. Brar, K. W. Mauser, L. Kim, and H. A. Atwater, "Electronically tunable perfect absorption in graphene," Nano Lett. 18, 971-979 (2018). https://doi.org/10.1021/acs.nanolett.7b04393
  24. M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, "Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging," Science 318, 1750-1753 (2007). https://doi.org/10.1126/science.1150124
  25. C. R. de Galarreta, A.M. Alexeev, Y.-Y. Au, M. Lopez-Garcia, M. Klemm, M. Cryan, J. Bertolotti, and C. D. Wright, "Nonvolatile reconfigurable phase-change metadevices for beam steering in the near infrared," Adv. Funct. Mater. 28, 1704993 (2018). https://doi.org/10.1002/adfm.201704993
  26. A. Forouzmand and H. Mosallaei. "Dynamic beam control via Mie-resonance based phase-change metasurface: a theoretical investigation," Opt. Express 26, 17948-17963 (2018). https://doi.org/10.1364/OE.26.017948
  27. T. Phan, D. Sell, E. W. Wang, S. Doshay, K. Edee, J. Yang, and J. A. Fan, "High-efficiency, large-area, topology-optimized metasurfaces," Light: Sci. Appl. 8, 48 (2019). https://doi.org/10.1038/s41377-019-0159-5
  28. H. Kim, J. Park, and B. Lee, Fourier modal method and its applications in computational nanophotonics (CRC Press, NY, USA. 2012).
  29. P. B. Johnson and R. W. Christy, "Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd," Phys. Rev. B 9, 5056 (1974). https://doi.org/10.1103/PhysRevB.9.5056
  30. J. An, K. Won, Y. Kim, J.-Y. Hong, H. Kim, Y. Kim, H. Song, C. Choi, Y. Kim, J. Seo, A. Morozov, H. Park, S. Hong, S. Hwang, K. Kim, and H.-S. Lee, "Slim-panel holographic video display," Nature Commun. 11, 5568 (2020). https://doi.org/10.1038/s41467-020-19298-4
  31. Y. Kim, K. Won, Y. Kim, J. An, H. Song, S. Kim, C.-S. Choi, and H.-S. Lee, "Electrically tunable transmission-type beam deflector using liquid crystal with high angular resolution," Appl. Opt. 57, 5090-5094 (2018). https://doi.org/10.1364/AO.57.005090
  32. C. Yoo, K. Bang, M. Chae, and B. Lee, "Extended-viewing-angle waveguide near-eye display with a polarization-dependent steering combiner," Opt. Lett. 45, 2870-2873 (2020). https://doi.org/10.1364/ol.391965