DOI QR코드

DOI QR Code

히치 각도 제어 알고리즘을 통한 카라반 스웨이 저감 장치 개발

Development of Caravan Sway Reduction System using the Hitch Angle Control Algorithm

  • 김창영 (목포대학교 기계공학과) ;
  • 유정주 (목포대학교 기계공학과) ;
  • 변경석 (목포대학교 기계공학과)
  • Kim, Chang-Young (Department of Mechanical Engineering, Mokpo National University) ;
  • Yoo, Jung-Joo (Department of Mechanical Engineering, Mokpo National University) ;
  • Byun, Kyung-Seok (Department of Mechanical Engineering, Mokpo National University)
  • 투고 : 2021.12.20
  • 심사 : 2021.12.30
  • 발행 : 2021.12.31

초록

카라반은 외부의 물리적 요인에 쉽게 영향을 받아 탑승자에게 위험한 상황을 초래하는 경우가 많다. 따라서 탑승자의 안정성을 확보하기 위해 스웨이 현상을 사전에 예방할 수 있는 스웨이 저감 장치를 개발할 필요성이 있다. 본 논문에서는 견인차량과 카라반 사이의 Hitch angle을 최소화하는 것을 목표로 한다. 구체적으로는 견인차량과 카라반 각각에 장착된 IMU 센서를 통해 카라반의 초기 불안정성을 감지하고, PID 제어기를 이용하여 Hitch angle, Hitch yaw rate가 Desired hitch angle, Desired hitch yaw rate에 수렴할 수 있도록 제어 값을 산출한다. 산출된 제어 값에 따라 카라반 좌우 브레이크에 다른 제동토크를 생성하여 분배하고 제어한다. 주행 실험을 통해 스웨이 저감 장치의 성능을 검증한 결과, 제어하지 않은 경우보다 Hitch angle이 감소한 것을 확인할 수 있었고, 횡 방향 안정성 향상률은 제어 전에 비해 78.9% 향상된 것을 확인하였다.

Caravans are easily affected by external physical factors and often cause dangerous situations for passengers. Therefore, in order to secure the stability of the passenger, there is a need to develop a sway reduction device capable of preventing the sway phenomenon in advance. This paper aims to minimize the hitch angle between the tow vehicle and the caravan. Specifically, the initial instability of the caravan is detected through an IMU sensor mounted on each of the tow vehicle and the caravan, and a control value is calculated to reduce errors from the Hitch angle and Hitch yaw rate using a PID controller. Different braking torques are generated, distributed, and controlled on the left and right brakes of the caravan according to the calculated control value. It could be verified through the driving experiment that the hitch angle was decreased compared to the case where the performance of the sway reduction device was not controlled, and the transverse stability improvement rate was improved by 94.49% compared to before control.

키워드

과제정보

본 과제(결과물)는 2021년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업의 결과입니다. (2021RIS-002)

참고문헌

  1. D. M. Kang and S. M. Ahn, "A Study on the Factory that Influence Jack Knife Phenomenon of Articulated Vehicles," Journal of the Korean Society for Power System Engineering, Vol.11, No.2, pp.58-6, 2007.
  2. S. J. Yim, "Optimum Yaw Moment Distribution with Electronic Stability Control and Active Rear Steering,"Journal of Institute of Control, Robotics and Systems, Vol.20, No.12, pp.1246-1251, 2014. https://doi.org/10.5302/J.ICROS.2014.14.0076
  3. J. I. Lee, K. W. Lee, S. K. Oh, J. H. Roh, Y. W. Kim, H. S. Kim, I. D. Kim and J. H. Jang, "Study of Development of Yaw Moment Control Algorithm to Reduce Neutral Sway Response of Vehicle with Trailer," KSAE Annual Conference Proceedings, pp.958-963, 2009.
  4. M. S. Kim, J. W. Lee and H. C. Lee, "Modeling for commercial Articulated Vehicle Trailer's Yaw Stability Improvement," KSAE Spring Conference Proceedings, pp.363-366, 2019
  5. M. S. Kim, Active Trailer Braking Optimal Control for Commercial Articulated Vehicle Trailer's Stability Improvement, Master of Arts, Hanyang University, Seoul, 2020.
  6. M. Zanchetta, D. Tavernini, A. Sorniotti, P. Gruber, B. Lenzo, A. Ferrara, K. Sannen, J. D. Smet and W. D. Nijs, "Trailer control through vehicle yaw moment control: Theoretical analysis and experimental assessment," Mechatronics, Vol.64, 2019.
  7. D. H. Wu and J. H. Lin, "Analysis of dynamic lateral response for a multi-axle- steering tractor and trailer," International Journal of Heavy Vehicle Systems, Vol.10, No.4, pp.281-294, 2003. https://doi.org/10.1504/IJHVS.2003.003694
  8. L. Alexiander, M. Donath, M. Hennessey, V. Morellas and C. Shankwitz, "A Lateral Dynamic Model of a Tractor-Trailer: Experimental Validation," 1996.
  9. J. W. Lee, B. R. Lee, "Design of Automatic Guided Vehicle Controller with Built-in Programmable Logic Controller,"Journal of the Institute of Convergence Signal Processing, Vol.20, No.3, pp118-124, 2019.
  10. T. Goggia, A. Sorniotti, L. D. Novellis, A. Ferrara, P. Gruber, J. Theunissen, D. Steenbeke, B. Knauder and J. Zehetner, "Integral sliding mode for the torque-vectoring control of fully electric vehicles: Theoretical design and experimental assessment," IEEE Transactions on Vehicular Technology, Vol.64, No.5, pp.1701-1715, 2014. https://doi.org/10.1109/TVT.2014.2339401
  11. J. M. Cho, I. H. Kim, C. S. Kim and K. S. Huh, "Development of Torque Vectoring System using e-AWD Module," KSAE Spring Conference Proceedings, pp.292-294, 2018.
  12. R. P. Osborn and T. H. Shim, "Independent control of all-wheel-drive torque distribution," Vehicle system dynamics, Vol.44, No.7, pp.529-546, 2006. https://doi.org/10.1080/00423110500485731
  13. L. R. Ray, "Nonlinear state and tire force estimation for advanced vehicle control," IEEE Transactions on Control Systems Technology, Vol.3, No.1, pp.117-124, 1995. https://doi.org/10.1109/87.370717