DOI QR코드

DOI QR Code

리뷰-피드백 프로세스를 통한 고객 이탈률 추정: 텍스트 마이닝, 계량경제학, 준실험설계 방법론을 활용한 실증적 연구

Estimate Customer Churn Rate with the Review-Feedback Process: Empirical Study with Text Mining, Econometrics, and Quai-Experiment Methodologies

  • 김초이 (경희대학교 경영학과) ;
  • 김재민 (경희대학교 빅데이터경영학과 ) ;
  • 정가현 (경희대학교 빅데이터경영학과 ) ;
  • 박재홍 (경희대학교 경영대학 )
  • Choi Kim (Management Information Systems, Kyung Hee University) ;
  • Jaemin Kim (Big Data Management, Kyung Hee University) ;
  • Gahyung Jeong (Big Data Management, Kyung Hee University) ;
  • Jaehong Park (Management, Kyung Hee University)
  • 투고 : 2021.05.31
  • 심사 : 2021.06.24
  • 발행 : 2021.08.31

초록

기존 연구들은 주로 사용자의 게임 참여 동기나 사회적 욕구에 따른 이탈 요인을 연구하였다. 하지만, 기존 연구들은 게임 참여 동기 관점에서 집중하다 보니, 사용자 불만 사항 개선에 따른 사용자 이탈에 관한 분석은 비교적 적게 이루어져왔다. 게임에 대한 사용자 불만 사항과 그에 따른 게임 품질 개선은 사용자가 게임에 참여하는 요인 중 하나이다. 따라서, 본 연구는 사용자 불만 요인이 사용자 이탈에 미치는 영향을 실증적으로 분석하여 그 관계를 살펴보고자 한다. 본 연구는 최근 유행했던 "PUBG - 배틀그라운드 게임"을 분석하여 제품 품질에 대한 불만 사항 피드백이 얼마나 사용자 이탈에 영향을 주는지 실증적으로 분석 한다. 텍스트 마이닝(Text Mining) 분석을 통해, 사용자들의 품질에 대한 불만요인을 도출하였고, 콕스모델(Cox Model)을 통해 불만 요인에 따른 사용자의 이탈률을 추정하였다. 또한 준실험설계 방법을 통해 실제 불만사항 개선 패치에 따라 사용자 수가 어떻게 변화하는지 살펴봄으로 본 연구 결과를 검증하였다. 분석 결과, 불만 사항 중 게임의 재미와 관련된 요인들이 사용자 이탈에 가장 큰 영향을 주었고, 반면 게임 사용 편의성과 관련된 불만 사항들은 비교적 사용자 이탈에 적은 영향을 준다는 것을 실증적으로 보였다. 본 연구결과에 따르면, 게임 불만 요인 개선에 따라 사용자들의 이탈 정도가 달라질 수 있으며, 이에 따라 게임 사용자 관리를 할 수 있다는 것을 밝혀냈다. 본 연구는 게임 개발 및 운영사 입장에서 사용자들의 불만 사항 개선에 대한 우선 순위를 제공해 줌으로서 실증적인 공헌을 제시한다.

Obviating user churn is a prominent strategy to capitalize on online games, eluding the initial investments required for the development of another. Extant literature has examined factors that may induce user churn, mainly from perspectives of motives to play and game as a virtual society. However, such works largely dismiss the service aspects of online games. Dissatisfaction of user needs constitutes a crucial aspect for user churn, especially with online services where users expect a continuous improvement in service quality via software updates. Hence, we examine the relationship between a game's quality management and its user base. With text mining and survival analysis, we identify complaint factors that act as key predictors of user churn. Additionally, we find that enjoyment-related factors are greater threats to user base than usability-related ones. Furthermore, subsequent quasi-experiment shows that improvements in the complaint factors (i.e., via game patches) curb churn and foster user retention. Our results shed light on the responsive role of developers in retaining the user base of online games. Moreover, we provide practical insights for game operators, i.e., to identify and prioritize more perilous complaint factors in planning successive game patches.

키워드

과제정보

이 논문 또는 저서는 2019년 대한민국 교육부와 한국연구재단의 인문사회분야 중견연구자지원사업의 지원을 받아 수행된 연구임(NRF-2019S1A5A2A01046660).

참고문헌

  1. 게임메카, "[아뿔싸] 던파 사용자들, 강화 소실 방지 아이템에 '들썩'" 중앙일보, 2011.08.29., Available at https://news.joins.com/article/6078972. 
  2. 삼정KPMG, "게임 산업을 둘러싼 10대 변화 트렌드", 2018, Issue Monitor, 89. 
  3. 유일환, "배틀그라운드, 스팀 동시 접속자 90만 밑으로 하락" 디스이즈게임, 2018.10.11., Available at http://www.thisisgame.com/webzine/news/nboard/4/?n=87394&utm_source=naver&utm_medium=outlink&utm_campaign=tigadmin74&utm_content=87394&nogate. 
  4. 이재영, "분기 수익 '반 토막' 펍지, 배틀그라운드에무슨 일이?", 인베스트조선, 2018.10.15., Available at http://www.investchosun.com/2018/10/15/3231056. 
  5. 한국콘텐츠진흥원, "2017년 4분기 콘텐츠산업 규모: 2017년 4분기 및 연간 콘텐츠산업 동향분석보고서", 2018. 
  6. 한국콘텐츠진흥원, "2017~2018년 상반기 국내 게임 산업 10대 이슈. 대한민국 게임백서 2018", 2019. 
  7. Alexandrovsky, D., M. A. Friehs, M. V. Birk, R. K. Yates, and R. L. Mandryk, "Game dynamics that support snacking, not feasting", In Proceedings of the Annual Symposium on Computer-Human Interaction in Play, October 2019, pp. 573-588. 
  8. Borbora, Z. H. and J. Srivastava, "User behavior modelling approach for churn prediction in online games", 2012 International Conference on Privacy, Security, Risk and Trust and 2012 International Confernece on Social Computing, 2012, pp. 51-60. 
  9. Castro, E. G. and M. Tsuzuki, "Churn prediction in online games using players' login records: A frequency analysis approach", IEEE Transactions on Computational Intelligence and AI in Games, Vol.7, No.3, 2015, pp. 1-1.  https://doi.org/10.1109/TCIAIG.2015.2409514
  10. Chen, K. T., P. Huang, and C. L. Lei, "How sensitive are online gamers to network quality?", Communications of the ACM, Vol.49, No.11, 2006a, pp. 34-38.  https://doi.org/10.1145/1167838.1167859
  11. Chen, V. H. H., H. B. L. Duh, P. S. K. Phuah, and D. Z. Y. Lam, "Enjoyment or engagement? Role of social interaction in playing massively mulitplayer online role-playing games (MMORPGS)", International Conference on Entertainment Computing. ICEC 2006, September 2006b, pp. 262-267. 
  12. Chen, P. and M. E. Zarki, "Perceptual view inconsistency: An objective evaluation framework for online game quality of experience", 10th Annual Workshop on Network and Systems Support for Games, 2011, pp. 1-6. 
  13. Chen, Y. and J. Xie, "Online Consumer Review: Word-of-Mouth as a New Element of Marketing Communication Mix", Management Science, Vol.54, No.3, 2008, pp. 477-491.  https://doi.org/10.1287/mnsc.1070.0810
  14. Cheung, C. M. K., X. L. Shen, Z. W. Y. Lee, and T. K. H. Chan, "Promoting sales of online games through customer engagement", Electronic Commerce Research and Application, Vol.14, No.4, 2015, pp. 241-250.  https://doi.org/10.1016/j.elerap.2015.03.001
  15. Cox, D. R., "Regression models and life tables (with discussion)", Journal of the Royal Statistical Sociey: Series B, Vol.34, No.2, 1972, pp. 187-202.  https://doi.org/10.1111/j.2517-6161.1972.tb00899.x
  16. Evans, E., "The economics of free freemium games, branding and the impatience economy", The International Journal of Research into New Media Technologies, Vol.22, No.6, 2016, pp. 1-18. 
  17. Fuller, J., K. Matzler, and M. Hoppe, "Brand community members as a source of innovation", Journal of Product Innovation Management, Vol.25, No.6, 2008, pp. 608-619.  https://doi.org/10.1111/j.1540-5885.2008.00325.x
  18. Griffiths, M. D., M. N. O. Davies, and D. Chappell, "Demographic factors and playing variables in online computer gaming", Cyber Psychology & Behavior, Vol.7, No.4, 2004, pp. 479-487.  https://doi.org/10.1089/cpb.2004.7.479
  19. Hadiji, F., R. Sifa, A. Drachen, C. Thurau, K. Kersting, and C. Bauckhage, "Predicting player churn in the wild", 2014 IEEE Conference on Computational Intelligence and Games, August 2014, pp. 1-8. 
  20. Hansen, C. B., "Generalized least squares inference in panel and multilevel models with serial correlation and fixed effects", Journal of Econometrics, Vol.140, No.2, 2007, pp. 670-694.  https://doi.org/10.1016/j.jeconom.2006.07.011
  21. Hyndman, R. J. and Y. Khandakar, "Automatic time series forecasting: The forecast package for R", Journal of Statistical Software, Vol.27, No.3, 2008, pp. 1-22. 
  22. Jones, S. K., "A statistical interpretation of term specificity and its application in retrieval", Journal of Documentation, Vol.28, No.1, 1972, pp. 11-21.  https://doi.org/10.1108/eb026526
  23. Jung, H. S., K. H. Kim, and C. H. Lee, "Influences of perceived product innovation upon usage behavior for MMORPG: Product capability, technology capability, and user centered design", Journal of Business Research, Vol.67, No.10, 2014, pp. 2171-2178.  https://doi.org/10.1016/j.jbusres.2014.04.027
  24. Kang, A. R., J. Y. Woo, J. Y. Park, and H. K. Kim, "Online game bot detection based on party-play log analysis", Computers & Mathematics with Applications, Vol.65, No.9, 2013, pp. 1384-1395.  https://doi.org/10.1016/j.camwa.2012.01.034
  25. Kawale, J., A. Pal, and J. Srivastava, "Churn prediction in MMORPGs: A social influence based approach", 2009 International Conference on Computational Science and Engineering, Vol.4, 2009, pp. 423-428. 
  26. Klimmt, C., D. Hefner, and P. Vorderer, "The video game experience as 'true' identification: A theory of enjoyable alterations of players' self-perception", Communication Theory, Vol.19, No.4, 2009, pp. 351-373.  https://doi.org/10.1111/j.1468-2885.2009.01347.x
  27. Lin, D., C. P. Bezemer, and A. E. Hassan, "An empirical study of early access games on the Steam platform", Empir. Softw. Eng., Vol.23, No.2, 2018, pp. 771-799.  https://doi.org/10.1007/s10664-017-9531-3
  28. Luhn, H. P., "A statistical approachto mechanized encoding and searching of literary information", IBM Journal of Research and Development, Vol.1, No.4, 1957, pp. 309-317.  https://doi.org/10.1147/rd.14.0309
  29. Martoncik, M. and J. Loks, "Do World of Warcraft (MMORPG) players experience less loneliness and social anxiety in online world (virtual environment) than in real world (offline)?", Computers in Human Behavior, Vol.56, 2016, pp. 127-134.  https://doi.org/10.1016/j.chb.2015.11.035
  30. Milosvic, M., N. Zivic, and I. Andjelkovic, "Early churn prediction with personalized targeting in mobile social games", Expert Systems with Applications, Vol.83, 2017, pp. 326-332.  https://doi.org/10.1016/j.eswa.2017.04.056
  31. Moon, J., M. D. Hossain, G. L. Sanders, E. J. Garrity, and S. Jo, "Player commitment to massively multiplayer online role-playing games (MMORPGs): An integrated model", International Journal of Electronic Commerce, Vol.17, No.4, 2013, pp. 7-38. 
  32. O'Neill, M., E. Vaziripour, J. Wu, and D. Zappala., "Condensing steam: Distilling the diversity of gamer behavior", IMC '16 Proc. of the Internet Measurement Conference (IMC), ACM, Santa Monica, USA, 2016, pp. 81-95. 
  33. Parasuraman, A., V. A. Zeithaml, and L. L. Berry, "Servqual: A multiple-item scale for measuring consumer perc", Journal of Retailing, Vol.64, No.1, 1988, pp. 12-40. 
  34. Prodan, R. and V. Nae, "Prediction-based real-time resource provisioning for massively multiplayer online games", Future Generation Computer Systems, Vol.25, No.7, 2009, pp. 785-793.  https://doi.org/10.1016/j.future.2008.11.002
  35. PUBG, "PC 1.0 Update #13 - Playerunknown's battlegrounds. playerunknown's battlegrounds", 2018a, https://www.pubg.com/2018/06/19/pc-1-0-update-13/. 
  36. PUBG, "PC 1.0 Update #14 - Playerunknown's battlegrounds. playerunknown's battlegrounds", 2018b, https://www.pubg.com/2018/06/19/pc-1-0-update-14/. 
  37. Rezaei, S. and S. S. Ghodsi, "Does value matters in playing online game? An emprircal study among massively multiplayer online role-playing games(MMORPGs)", Computers in Human Behavior, Vol.35, 2014, pp. 252-266.  https://doi.org/10.1016/j.chb.2014.03.002
  38. Sifa, R., F. Hadiji, J. Runge, A. Drachen, K. Kersting, and C. Bauckhage, "Predicting purchase decisions in mobile free-to-play games", In Proceeding of AAAI AIIDE, 2015. 
  39. Sjoblom, M. and J. Hamari, "Why do people watch others play video games? An empirical study on the motivations of twitch users", Computers in Human Behavior, Vol.75. 2017, pp. 1-12.  https://doi.org/10.1016/j.chb.2017.04.051
  40. Trepte, S. and L. Reinecke "Avatar creation and video game enjoyment effects of life-satisfaction, game competitiveness, and identification with the avatar", Media Psychology, Vol.22, No.4, 2010, pp. 171-184.  https://doi.org/10.1027/1864-1105/a000022
  41. Wong, K. K. K., "Using cox regression to model customer time to churn in the wireless telecommunications industry", Journal of Targeting, Measurement and Analysis for Marketing, Vol.19, No.1, 2011, pp. 37-43.  https://doi.org/10.1057/jt.2011.1
  42. Wu, J. H., S. C. Wang, and H. H. Tsai, "Falling in love with online games: The uses and gratifications perspective", Computers in Human Behavior, Vol.26, No.6, 2010, pp. 1862-1871.  https://doi.org/10.1016/j.chb.2010.07.033
  43. Yee, N., "The demographics, motivations, and derived experiences of users of massively multi-user online graphical environments", Presence: Teleoperators and Virtual Environments, Vol.15, No.3, 2006, pp. 309-329. https://doi.org/10.1162/pres.15.3.309