DOI QR코드

DOI QR Code

Behaviors of Desorption Agents During Removal of Cs From Clay Minerals and Actual Soil

  • Received : 2020.10.25
  • Accepted : 2020.12.19
  • Published : 2021.03.30

Abstract

The behaviors of various desorption agents were investigated during the desorption of cesium (Cs) from samples of clay minerals and actual soil. Results showed that polymeric cation exchange agents (polyethyleneimine (PEI)) efficiently desorbed Cs from expandable montmorillonite, whereas acidic desorption solutions containing HCl or PEI removed considerable Cs from hydrobiotite. However, most desorption agents could desorb only 54% of Cs from illite because of Cs's specific adsorption to selective adsorption sites. Cs desorption from an actual soil sample containing Cs-selective clay mineral illite (< 200 ㎛) and extracted from near South Korea's Kori Nuclear Power Plant was also investigated. Considerable adsorbed 137Cs was expected to be located at Cs-selective sites when the 137Cs loading was much lower than the sample's cation exchange capacity. At this low 137Cs loading, the total Cs amount desorbed by repeated washing varied by desorption agent in the order HCl > PEI > NH4+, and the highest Cs desorption amount achieved using HCl was 83%. Unlike other desorption agents with only cation exchange capabilities, HCl can attack minerals and induce dissolution of metallic elements. HCl's ability to both alter minerals and induce H+/Cs+ ion exchange is expected to promote Cs desorption from actual soil samples.

Keywords

References

  1. T. Yamamoto, "Radioactivity of Fission Product and Heavy Nuclides Deposited on Soil in Fukushima DaiIchi Nuclear Power Plant accident", J. Nucl. Sci. Technol., 49(12), 1116-1133 (2012). https://doi.org/10.1080/00223131.2012.740355
  2. D. Ding, Z. Zhang, Z. Lei, Y. Yang, and T. Cai, "Remediation of Radiocesium-Contaminated Liquid Waste, Soil, and Ash: A Mini Review Since the Fukushima Daiichi Nuclear Power Plant accident", Environ. Sci. Pollut. Res. Int., 23(3), 2249-2263 (2016). https://doi.org/10.1007/s11356-015-5825-4
  3. R.M. Cornell, "Adsorption of Cesium on Minerals: A review", J. Radioanal. Nucl. Chem. Artic., 171(2), 483-500 (1993). https://doi.org/10.1007/bf02219872
  4. N.M. Nagy, J. Konya, and G.Wazelischen-Kun, "The Adsorption and Desorption of Carrier-Free Radioactive Isotopes on Clay Minerals and Hungarian Soils", Colloids Surfaces A Physicochem. Eng. Asp., 152(3), 245-250 (1999). https://doi.org/10.1016/S0927-7757(98)00832-2
  5. S.M. Park, J. Lee, E.K. Jeon, S. Kang, M.S. Alam, D.C.W. Tsang, D.S. Alessi, and K. Baek, "Adsorption Characteristics of Cesium on the Clay Minerals: Structural Change Under Wetting and Drying Condition", Geoderma, 340, 49-54 (2019). https://doi.org/10.1016/j.geoderma.2018.12.002
  6. H. Mukai, A. Hirose, S. Motai, R. Kikuchi, K. Tanoi, T.M. Nakanishi, T. Yaita, and T. Kogure, "Cesium Adsorption/Desorption Behavior of Clay Minerals Considering Actual Contamination Conditions in Fukushima", Sci. Rep., 6, 21543 (2016). https://doi.org/10.1038/srep21543
  7. S.M. Park, D.S. Alessi, and K. Baek, "Selective Adsorption and Irreversible Fixation Behavior of Cesium onto 2:1 Layered Clay Mineral: A Mini Review", J. Hazard. Mater., 569-576 (2019).
  8. J.C. Miranda-Trevino and C.A. Coles, "Kaolinite Properties, Structure and Influence of Metal Retention on pH", Appl. Clay Sci., 23(1-4), 133-139 (2003). https://doi.org/10.1016/S0169-1317(03)00095-4
  9. Y. Kim, R.J. Kirkpatrick, and R.T. Cygan, "133Cs NMR Study of Cesium on the Surfaces of Kaolinite and Illite", Geochim. Cosmochim. Acta, 60(21), 4059-4074 (1996). https://doi.org/10.1016/S0016-7037(96)00257-8
  10. C. Poinssot, B. Baeyens, and M.H. Bradbury, "Experimental and Modelling Studies of Caesium Sorption on Illite", Geochim. Cosmochim. Acta, 63(19), 3217-3227 (1999). https://doi.org/10.1016/S0016-7037(99)00246-X
  11. M.H. Bradbury and B. Baeyens, "A Generalised Sorption Model for the Soncentration Dependent Uptake of Caesium by Argillaceous Rocks", J. Contam. Hydrol., 42(2), 141-163 (2000). https://doi.org/10.1016/S0169-7722(99)00094-7
  12. M. Okumura, H. Nakamura, and M. Machida, "Mechanism of Strong Affinity of Clay Minerals to Radioactive Cesium: First-Principles Calculation Study for Adsorption of Cesium at Frayed Edge Sites in Muscovite", J. Phys. Soc. Japan, 82(3), 033802 (2013). https://doi.org/10.7566/JPSJ.82.033802
  13. H. Mukai, T. Hatta, H. Kitazawa, H. Yamada, T. Yaita, and T. Kogure, "Speciation of Radioactive Soil Particles in the Fukushima Contaminated Area by IP Autoradiography and Microanalyses", Environ. Sci. Technol., 48(22), 13053-13059 (2014). https://doi.org/10.1021/es502849e
  14. K. Tamura, T. Kogure, Y. Watanabe, C. Nagai, and H. Yamada, "Uptake of Cesium and Strontium Ions by Artificially Altered Phlogopite", Environ. Sci. Technol., 48(10), 5808-5815 (2014). https://doi.org/10.1021/es4052654
  15. T. Kogure, K. Morimoto, K. Tamura, H. Sato, and A. Yamagishi, "XRD and HRTEM Evidence for Fixation of Cesium Ions in Vermiculite Clay", Chem. Lett., 41(4), 380-382 (2012). https://doi.org/10.1246/cl.2012.380
  16. B.H. Kim, C.W. Park, H.M. Yang, B.K. Seo, B.S. Lee, K.W. Lee, and S.J. Park, "Comparison of Cs Desorption from Hydrobiotite by Cationic Polyelectrolyte and Cationic Surfactant", Colloids Surfaces A Physicochem. Eng. Asp., 522, 382-388 (2017). https://doi.org/10.1016/j.colsurfa.2017.02.058
  17. A.J. Fuller, S. Shaw, M.B. Ward, S.J. Haigh, J.F.W. Mosselmans, C.L. Peacock, S. Stackhouse, A.J. Dent, D. Trivedi, and I.T. Burke, "Caesium Incorporation and Retention in Illite Interlayers", Appl. Clay Sci., 108, 128-134 (2015). https://doi.org/10.1016/j.clay.2015.02.008
  18. A. de Koning and R.N.J. Comans, "Reversibility of Radiocaesium Sorption on Illite", Geochim. Cosmochim. Acta, 68(13), 2815-2823 (2004). https://doi.org/10.1016/j.gca.2003.12.025
  19. B.C. Bostick, M.A. Vairavamurthy, K.G. Karthikeyan, and J. Chorover, "Cesium Adsorption on Clay minerals: An EXAFS Spectroscopic Investigation", Environ. Sci. Technol., 36(12), 2670-2676 (2002). https://doi.org/10.1021/es0156892
  20. C.W. Park, B.H. Kim, H.M. Yang, B.K. Seo, J.K. Moon, and K.W. Lee, "Removal of Cesium Ions from Clays by Cationic Surfactant Intercalation", Chemosphere, 168, 1068-1074 (2017). https://doi.org/10.1016/j.chemosphere.2016.10.102
  21. S.M. Park, J.G. Kim, H.B. Kim, Y.H. Kim, and K. Baek, "Desorption Technologies for Remediation of Cesium-Contaminated Soils: A Short Review", Environ. Geochem. Health, 1-10 (2020).
  22. L. Dzene, E. Tertre, F. Hubert, and E. Ferrage, "Nature of the Sites Involved in the Process of Cesium Desorption from Vermiculite", J. Colloid Interface Sci., 455, 254-260 (2015). https://doi.org/10.1016/j.jcis.2015.05.053
  23. K. Tamura, H. Sato, and A. Yamagishi, "Desorption of Cs+ Ions from a Vermiculite by Exchanging with Mg2+ Ions: Effects of Cs+ -Capturing Ligand", J. Radioanal. Nucl. Chem., 303(3), 2205-2210 (2014).
  24. C.W. Park, B.H. Kim, H.M. Yang, B.K. Seo, and K.W. Lee, "Enhanced Desorption of Cs from Clays by a Polymeric Cation-Exchange Agent", J. Hazard. Mater., 327, 127-134 (2017). https://doi.org/10.1016/j.jhazmat.2016.12.037
  25. B.H. Kim, C.W. Park, H.M. Yang, B.K. Seo, S.J. Park, and K.W. Lee, "Effect of Alkyl Length of Cationic Surfactants on Desorption of Cs from Contaminated Clay", J. Nucl. Fuel Cycle Waste Technol., 15(1), 27-34 (2017). https://doi.org/10.7733/JNFCWT.2017.15.1.27
  26. I. Kim, J.H. Kim, S.M. Kim, C.W. Park, I.H. Yoon, H.M. Yang, and K.W. Lee, "Desorption of Cesium from Hydrobiotite by Hydrogen Peroxide with Divalent Cations", J. Hazard. Mater., 390, 121381 (2020). https://doi.org/10.1016/j.jhazmat.2019.121381
  27. S.M. Kim, I.H. Yoon, I.G. Kim, C.W. Park, Y.H. Sihn, J.H. Kim, and S.J. Park, "Cs Desorption Behavior During Hydrothermal Treatment of Illite with Oxalic Acid", Environ. Sci. Pollut. Res., 27(28), 35580-35590 (2020). https://doi.org/10.1007/s11356-020-09675-3
  28. K. Van Rompaey, E. Van Ranst, F. De Coninck, and N. Vindevogel, "Dissolution Characteristics of Hectorite in Inorganic Acids", Appl. Clay Sci., 21(2), 241-256 (2002). https://doi.org/10.1016/S0169-1317(02)00086-8
  29. L.A. Wendling, J.B. Harsh, C.D. Palmer, M.A. Hamilton, and M. Flury, "Cesium Sorption to Illite as Affected by Oxalate", Clays Clay Miner., 52(3), 375-381 (2004). https://doi.org/10.1346/CCMN.2004.0520312
  30. J. Wu, B. Li, J. Liao, Y. Feng, D. Zhang, J. Zhao, W. Wen, Y. Yang, and N. Liu, "Behavior and Analysis of Cesium Adsorption on Montmorillonite Mineral.", J. Environ. Radioact., 100(10), 914-920 (2009). https://doi.org/10.1016/j.jenvrad.2009.06.024
  31. C. Liu, J.M. Zachara, S.C. Smith, J.P. McKinley, and C.C. Ainsworth, "Desorption Kinetics of Radiocesium from Subsurface Sediments at Hanford Site, USA", Geochim. Cosmochim. Acta, 67(16), 2893-2912 (2003). https://doi.org/10.1016/S0016-7037(03)00267-9
  32. C.W. Park, B.H. Kim, H.M. Yang, B.K. Seo, and K.W. Lee, "Enhanced Desorption of Cs from Clays by a Polymeric Cation-Exchange Agent", J. Hazard. Mater., 327, 127-134 (2017). https://doi.org/10.1016/j.jhazmat.2016.12.037
  33. L.J. Poppe, V.F. Paskevich, J.C. Hathaway, and D.S. Blackwood. A Laboratory Manual for X-Ray Powder Diffraction, U.S. Geological Survey Open-File Report, 01-041 (2001).
  34. D. Carroll, "Clay Minerals: A Guide to Their X-Ray Identification", Spec. Pap. Geol. Soc. Am., 126, 1-80 (1970).
  35. P. Komadel, J. Madejova, M. Janek, W.P. Gates, R.J. Kirkpatrick, and J.W. Stucki, "Dissolution of Hectorite in Inorganic Acids", Clays Clay Miner., 44(2), 228-236 (1996). https://doi.org/10.1346/CCMN.1996.0440208
  36. D. Carroll and H.C. Starkey, "Reactivity of Clay Minerals with Acids and Alkalies", Clays Clay Miner., 19(5), 321-333 (1971). https://doi.org/10.1346/CCMN.1971.0190508
  37. J. Lee, S.M. Park, E.K. Jeon, and K. Baek, "Selective and Irreversible Adsorption Mechanism of Cesium on Illite", Appl. Geochemistry, 85, 188-193 (2017). https://doi.org/10.1016/j.apgeochem.2017.05.019
  38. C.W. Park, S.M. Kim, I. Kim, I.H. Yoon, J. Hwang, J.H. Kim, H.M. Yang, and B.K. Seo, "Sorption Behavior of Cesium on Silt and Clay Soil Fractions", J. Environ. Radioact., 233, 106592 (2021). https://doi.org/10.1016/j.jenvrad.2021.106592