참고문헌
- Alibrandi, U., Alani, A.M. and Ricciardi, G. (2015), "A new sampling strategy for SVM-based response surface for structural reliability analysis", Prob. Eng. Mech., 41, 1-12. https://doi.org/10.1016/j.probengmech.2015.04.001.
- Au, S.K. (2016), "On MCMC algorithm for subset simulation", Prob. Eng. Mech., 43, 117-120. https://doi.org/10.1016/j.probengmech.2015.12.003.
- Basaga, H.B., Bayraktar, A. and Kaymaz, I. (2012), "An improved response surface method for reliability analysis of structures", Struct. Eng. Mech., 42(2),175-189. http://orcid.org/0000-0002-8973-9228. https://doi.org/10.12989/sem.2012.42.2.175
- Beer, M. and Spanos, P.D. (2009), "A neural network approach for simulating stationary stochastic processes", Struct. Eng. Mech., 32(1), 71-94. https://doi.org/10.12989/sem.2009.32.1.071.
- Cadini, F., Santos, F. and Zio, E. (2014), "An improved adaptive kriging-based importance technique for sampling multiple failure regions of low probability", Reliab. Eng. Syst. Saf., 131, 109-117. https://doi.org/10.1016/j.ress.2014.06.023.
- Cao, Z., Dai, H. and Wang, W. (2011), "Low-discrepancy sampling for structural reliability sensitivity analysis", Struct. Eng. Mech., 38(1), 125-140. https://doi.org/10.12989/sem.2011.38.1.125.
- Cheng, J., Cai, C.S. and Xiao, R.C. (2007), "Application of artificial neural networks to the response prediction of geometrically nonlinear truss structures", Struct. Eng. Mech., 26(3), 251-262. https://doi.org/10.12989/sem.2007.26.3.251.
- Echard, B., Gayton, N. and Lemaire, M. (2011), "AK-MCS: An active learning reliability method combining Kriging and Monte Carlo Simulation", Struct. Saf., 33(2), 145-154. https://doi.org/10.1016/j.strusafe.2011.01.002.
- Echard, B., Gayton, N., Lemaire, M. and Relun, N. (2013), "A combined Importance Sampling and Kriging reliability method for small failure probabilities with time-demanding numerical models", Reliab. Eng. Syst. Saf., 111, 232-240. https://doi.org/10.1016/j.ress.2012.10.008.
- Fang, Y. and Teea, K.F. (2017), "Structural reliability analysis using response surface method with improved genetic algorithm", Struct. Eng. Mech., 62(2), 139-142. https://doi.org/10.12989/sem.2017.62.2.139.
- Fauriat, W. and Gayton, N. (2014), "AK-SYS: An adaptation of the AK-MCS method for system reliability", Reliab. Eng. Syst. Saf., 123, 137-144. https://doi.org/10.1016/j.ress.2013.10.010.
- Ghasemi, S.H. and Nowaka, A.S. (2017), "Reliability index for non-normal distributions of limit state functions", Struct. Eng. Mech., 62(3), 365-372. https://doi.org/10.12989/sem.2017.62.3.365.
- Kang, B.J., Kim, J.H. and Kim, Y. (2016), "Engineering criticality analysis on an offshore structure using the first- and second-order reliability method", Int. J. Naval Arch. Ocean Eng., 8(6), 577-588. https://doi.org/10.1016/j.ijnaoe.2016.05.014.
- Kmet, S., Tomko, M. and Brda, J. (2011), "Time-dependent analysis of cable trusses Part II. Simulation-based reliability assessment", Struct. Eng. Mech., 38(2), 171-193. https://doi.org/10.12989/sem.2011.38.2.171.
- Liu, X., Wu, Y., Wang, B., Ding, J. and Jie, H. (2017), "An adaptive local range sampling method for reliability-based design optimization using support vector machine and Kriging model", Struct. Multidisc. Optim., 55(6), 2285-2304. https://doi.org/10.1007/s00158-016-1641-9.
- Lv, Z., Lu, Z. and Wang, P. (2015), "A new learning function for Kriging and its applications to solve reliability problems in engineering", Comput. Math. Appl., 70(5), 1182-1197. https://doi.org/10.1016/j.camwa.2015.07.004.
- Pan, Q. and Dias, D. (2017), "An efficient reliability method combining adaptive Support Vector Machine and Monte Carlo Simulation", Struct. Saf., 67, 85-95. https://doi.org/10.1016/j.strusafe.2017.04.006.
- Puatatsananon, W. and Saouma, V.E. (2006), "Reliability analysis in fracture mechanics using the first-order reliability method and Monte Carlo simulation", Fatig. Fract. Eng. Mater. Struct., 29(11), 959-975. https://doi.org/10.1111/j.1460-2695.2006.01009.x.
- Au, S.K. and Beck, J.L. (1999), "A new adaptive importance sampling scheme for reliability calculations", Struct. Saf., 21(2), 135-158. https://doi.org/10.1016/S0167-4730(99)00014-4.
- Schobi, R., Sudret, B. and Marelli, S. (2017), "Rare event estimation using Polynomial-Chaos Kriging", ASCE-ASME J. Risk Uncertain. Eng. Syst., Part A: Civil Eng., 3(2), D4016002. https://doi.org/10.1061/AJRUA6.0000870.
- Song, H., Choi, K.K., Lee, I., Zhao, L. and Lamb, D. (2013), "Adaptive virtual support vector machine for reliability analysis of high-dimensional problems", Struct. Multidisc. Optim., 47(4), 479-491. https://doi.org/10.1007/s00158-012-0857-6.
- Song, S.F. and Lu, Z.Z. (2007), "Improved line sampling reliability analysis method and its application", Key Eng. Mater., 353-358, 1001-1004. https://doi.org/10.4028/www.scientific.net/KEM.353-358.1001.
- Sun, Z., Wang, J., Li, R. and Tong, C. (2017), "LIF: A new Kriging based learning function and its application to structural reliability analysis", Reliab. Eng. Syst. Saf., 157, 152-165. https://doi.org/10.1016/j.ress.2016.09.003.
- Tong, C., Sun, Z., Zhao, Q., Wang, Q. and Wang, S. (2015), "A hybrid algorithm for reliability analysis combining Kriging and subset simulation importance sampling", J. Mech. Sci. Technol., 29(8), 3183-3193. https://doi.org/10.1007/s12206-015-0717-6.
- Vahedi, J., Ghasemi, M.R. and Miri, M. (2018), "Structural reliability assessment using an enhanced adaptive Kriging method", Struct. Eng. Mech., 66(6), 677-691. https://doi.org/10.12989/sem.2018.66.6.677.
- Wagstaff, K., Cardie, C. and Rogers, S. (2001), "Constrained k-means clustering with background knowledge", Eighteenth International Conference on Machine Learning, 16(8). https://doi.org/10.3390/s16081290.
- Wang, B., Wang, D., Jin, J. and Zhang, J. (2013), "Efficient estimation of the functional reliability of a passive system by means of an improved Line Sampling method", Ann. Nucl. Energy, 55, 9-17. https://doi.org/10.1016/j.anucene.2012.12.015.
- Wang, J. and Sun, Z. (2018), "The stepwise accuracy-improvement strategy based on the Kriging model for structural reliability analysis", Struct. Multidisc. Optim., 58(2), 595-612. https://doi.org/10.1007/s00158-018-1911-9.
- Wang, Z. and Shafieezadeh, A. (2018), "ESC: an efficient error-based stopping criterion for kriging-based reliability analysis methods", Struct. Multidisc. Optim., 59(5), 1621-1637. https://doi.org/10.1007/s00158-018-2150-9.
- Wanying, Y., Zhenzhou, L., Yicheng, Z. and Xian, J. (2018), "AK-SYSi: an improved adaptive Kriging model for system reliability analysis with multiple failure modes by a refined U learning function", Struct. Multidisc. Optim., 59(1), 263-278. https://doi.org/10.1007/s00158-018-2067-3.
- Yang, X., Liu, Y., Mi, C. and Wang, X. (2018), "Active learning Kriging model combining with Kernel-Density-Estimation-based importance sampling method for the estimation of low failure probability", J. Mech. Des., 140(5), https://doi.org/10.1115/1.4039339.
- Yonezawa, M., Okuda, S. and Kobayashi, H. (2009), "Structural reliability estimation based on quasi ideal importance sampling simulation", Struct. Eng. Mech., 32(1), 55-69. https://doi.org/10.12989/sem.2009.32.1.055.
- Yun, W., Lu, Z. and Jiang, X. (2018), "An efficient reliability analysis method combining adaptive Kriging and modified importance sampling for small failure probability", Struct. Multidisc. Optim., 58(4), 1383-1393. https://doi.org/10.1007/s00158-018-1975-6.
- Zhang, Y., Sun, Z., Yan, Y., Yu, Z. and Wang, J. (2019), "An efficient adaptive reliability analysis method based on Kriging and Weighted average nisclassification rate improvement", IEEE Access, 7, 94954-94965. https://doi.org/10.1109/ACCESS.2019.2928332.
- Zhang, Z., Jiang, C., Wang, G.G. and Han, X. (2015), "First and second order approximate reliability analysis methods using evidence theory", Reliab. Eng. Syst. Saf., 137, 40-49. https://doi.org/10.1016/j.ress.2014.12.011.
- Zhao, H., Yue, Z., Liu, Y., Gao, Z. and Zhang, Y. (2015), "An efficient reliability method combining adaptive importance sampling and Kriging metamodel", Appl. Math. Model., 39(7), 1853-1866. https://doi.org/10.1016/j.apm.2014.10.015.