DOI QR코드

DOI QR Code

Three-phase-lag model on a micropolar magneto-thermoelastic medium with voids

  • Alharbi, Amnah M. (Department of Mathematics, College of Science, Taif Univeristy) ;
  • Othman, Mohamed I.A. (Department of Mathematics, Faculty of Science, Zagazig University) ;
  • Al-Autabi, Al-Anoud M. Kh. (Department of Mathematics, College of Science, Taif Univeristy)
  • 투고 : 2020.02.22
  • 심사 : 2021.02.14
  • 발행 : 2021.04.25

초록

This paper harnesses a micropolar thermoelastic medium consisting of voids to scrutinize the impacts of a magnetic field on it. To assess the problem, the three-phase-lag model (3PHL) has been employed and the analytical expressions of various variables under consideration have been derived using normal model analysis. The paper presents a graphical illustration of the material's stress, temperature, and dimensionless displacement. It has also been ensured that the predictions associated with results by different theories are not neglected instead; they are used to carry out appropriate comparisons in scenarios where the magnetic field is present as well as absent. The numerical results indicate that the magnetic field and the phase-lag of heat flux play a vital role in determining the distribution of field quantities. Thus, the investigation helped derive various interesting cases.

키워드

참고문헌

  1. Alimirzaei, S., Mohammadimehr, M. and Tounsi, A. (2019), "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions", Struct. Eng. Mech., 71(5), 485-502. https://doi.org/10.12989/sem.2019.71.5.485.
  2. Cowin, S.C. and Nunziato, J.W. (1983), "Linear elastic materials with voids", J. Elasticity, 13, 125-147. https://doi.org/10.1007/BF00041230.
  3. El-Karamany, A.S. and Ezzat, M.A. (2004), "Analytical aspects in boundary integral equation formulation for the generalized linear micropolar thermoelasticity", Int. J. Mech. Sci., 46(3), 389-409. https://doi.org/10.1016/j.ijmecsci.2004.03.013.
  4. El-Karamany, A.S. and Ezzat, M.A. (2013), "On the three-phase-lag linear micropolar thermoelasticity theory", Eur. J. Mech.-A/Solid., 40, 198-208. https://doi.org/10.1016/j.euromechsol.2013.01.011.
  5. Eringen, A.C. (1970), "Foundations of micropolar thermoelasticity", Course of Lectures No. 23, CSIM Udine Springer.
  6. Green, A.E. and Lindsay, K.A. (1972), "Thermoelasticity", J. Elasticity, 2, 1-7. https://doi.org/10.1007/BF00045689.
  7. Green, A.E. and Naghdi, P.M. (1991), "A re-examination of the basic postulate of thermo-mechanics", Proc. Roy. Soc. London, 432, 171-194.
  8. Green, A.E. and Naghdi, P.M. (1992), "On undamped heat waves in an elastic solid", J. Therm. Stress., 15(2), 253-264. https://doi.org/10.1080/01495739208946136.
  9. Green, A.E. and Naghdi, P.M. (1993), "Thermoelasticity without energy dissipation", J. Elasticity, 31, 189-208. https://doi.org/10.1007/BF00044969.
  10. Kumar, R. and Chawla, V. (2011), "A study of plane wave propagation in anisotropic three-phase-lag and two-phase-lag model", Int. Commun. Heat Mass Transf., 38(9) 1262-1268. https://doi.org/10.1016/j.icheatmasstransfer.2011.07.005.
  11. Lord, H.W. and Shulman Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solid., 15(5), 299-309. https://doi.org/10.1016/0022-5096(67) 90024-5.
  12. Marin, M., Agarwal, R.P. and Othman, M.I.A. (2014), "Localization in time of solutions for thermoelastic micropolar materials with voids", Comput., Mater. Continua, 40(1), 35-48. https://doi.org/10.3970/cmc.2014.040.035.
  13. Marin, M., Craciun, E.M. and Pop, N. (2016), "Considerations on mixed initial-boundary value problems for micropolar porous bodies", Dyn. Syst. Appl, 25(1-2), 175-196.
  14. Marin, M., Othman, M.I.A. and Abbas, I.A. (2015), "An extension of the domain of influence theorem for anisotropic thermo-elastic material with voids", J. Comput. Theor. Nanosci., 12(8), 1594-1598. https://doi.org/10.1166/jctn.2015.3974.
  15. Marin, M., Vlase, S., Ellahi, R. and Bhatti, M.M. (2019), "On the partition of energies for the backward in time problem of thermoelastic materials with a dipolar structure", Symmetry, 11(7), 863-878. https://doi.org/10.3390/sym11070863.
  16. Nowacki, M. (1966), "Couple-stresses in the theory of thermo-elasticity", Proc. IUTAM Symposia, Vienna, Springer-Verlag.
  17. Othman, M.I.A. and Abd-Elaziz, E.M. (2017), "Plane waves in a magneto-thermoelastic solids with voids and microtemperatures due to hall current and rotation", Result. Phys., 7, 4253-4263. https://doi.org/10.1016/j.rinp.2017.10.053.
  18. Othman, M.I.A. and Abd-Elaziz, E.M. (2019), "Effect of initial stress and hall current on a magneto-thermoelastic porous medium with micro-temperatures", Indi. J. Phys., 93(4), 475-485. https://doi.org/10.1007/s12648-018-1313-2.
  19. Othman, M.I.A. and Atwa, S.Y. (2012), "Response of micropolar thermoelastic medium with voids due to various source under Green-Naghdi theory", Acta Mechanica Solida Sinica, 25(2), 197-209. https://doi.org/10.1016/S0894-9166(12)60020-2.
  20. Othman, M.I.A. and Eraki, E.E.M. (2017), "Generalized magneto-thermoelastic half-space with diffusion under initial stress using three-phase-lag model", Mech. Bas. Des. Struct. Mach., 45(2), 145-159. http://dx.doi.org/10.1080/15397734.2016.1152193.
  21. Othman, M.I.A. and Song, Y.Q. (2009), "The effect of rotation on 2-D thermal shock problems for a generalized magneto-thermo-elasticity half-space under three theories", Multidisc. Model. Mater. Struct., 5(1), 43-58. https://doi.org/10.1108/15736105200900003.
  22. Othman, M.I.A. and Song, Y.Q. (2016), "Effect of thermal relaxation and magnetic field on generalized micropolar thermoelastic medium", J. Appl. Mech. Tech. Phys., 57(1), 108-116. https://doi.org/10.1134/S0021894416010120.
  23. Quintanilla, R. and Racke, R. (2008), "A note on stability in three-phase-lag heat conduction", Int. J. Heat Mass Tran., 51(1/2), 24-29. https://doi.org/10.1016/j.ijheatmasstransfer.2007.04.045.
  24. Said, S.M. (2016), "Wave propagation in a magneto-micropolar thermoelastic medium with two-temperature for three-phase-lag model", Comput. Mater. Continua, 52(1), 1-24.
  25. Scalia, A. (1990), "On some theorems in the theory of micropolar thermoelasticity", Int. J. Eng. Sci., 28(3), 181-189. https://doi.org/10.1016/0020-7225(90)90122-Y.
  26. Sheokand, S.K., Kumar, R., Kalkal, K.K. and Deswal, S. (2019), "Propagation of plane waves in an orthotropic magneto-thermo-diffusive rotating half-space", Struct. Eng. Mech., 72(4), 455-468. https://doi.org/10.12989/sem.2019.72.4.455.
  27. Tauchert, T.R., Claus, W.D. and Ariman, T. (1968), "The linear theory of micropolar thermoelasticity", Int. J. Eng. Sci., 6(1), 37-47. https://doi.org/10.1016/0020-7225(68)90037-2
  28. Yang, X.J. (2017), "A new integral transform operator for solving the heat-diffusion problem", Appl. Math. Lett., 64, 193-197. https://doi.org/10.1016/j.aml.2016.09.011.
  29. Yang, X.J. and Gao, F. (2017), "A new technology for solving diffusion and heat equations", Therm. Sci., 21(1), 133-140. https://doi.org/10.2298/TSCI160411246Y
  30. Yang, X.J., Baleanu, D., Lazarevic, M.P. and Cajic, M.S. (2015), "Fractal boundary value problems for integral and differential equations with local fractional operators", Therm. Sci., 9(3), 959-966.
  31. Yang, X.J., Srivastava, H.M. and Machado, J.A.T. (2016), "A new fractional derivative without singular kernel application to the modelling of the steady heat flow", Therm. Sci., 20(2), 753-756. https://doi.org/10.2298/tsci151224222y