참고문헌
- AbdelAleem, B.H. and Hassan, A.A.A. (2018), "Development of self-consolidating rubberized concrete incorporating silica fume", Constr. Build. Mater., 161, 389-397. https://doi.org/10.1016/j.conbuildmat.2017.11.146.
- Abdollahzadeh, A., Masoudnia, R. and Aghababaei, S. (2011), "Predict strength of rubberized concrete using artificial neural network", WSEAS Tran. Comput., 2(10), 31-40.
- Akilli, A., Isik, E., Bakis, A. and Ulker, M. (2016), "Investigation of Using Rubber Granules in Concrete", IOSR J. Eng., 6(3), 36-40. https://doi.org/10.9790/3021-067013646
- Aktas, G. and Ozerdem, M.S. (2016), "Prediction of behavior of fresh concrete exposed to vibration using artificial neural networks and regression model", Struct. Eng. Mech., 60(4), 655-665. http://dx.doi.org/10.12989/sem.2016.60.4.655.
- Alaloula, W.S., Musarata, M.A., Tayeh, B.A., Sivalingama, S., Bin Roslia, M.F., Haruna, S. and Khan, M.I. (2020), "Mechanical and deformation properties of rubberized engineered cementitious composite (ECC)", Case Stud. Constr. Mater., 13, 1-13. https://doi.org/10.1016/j.cscm.2020.e00385.
- Angelin, A.F., Cecche Lintz, R.C. and Barbosa, L.A.G. (2018), "Fresh and hardened properties of self-compacting concrete modified with lightweight and recycled aggregates", Revista IBRACON de Estruturas e Materiais, 11(1), 76-94. https://dx.doi.org/10.1590/s1983-41952018000100005.
- Aslani, F., Ma, G., Wan, D.L.Y. and Le, V.X.T. (2018), "Experimental investigation into rubber granules and their effects on the fresh and hardened properties of self-compacting concrete", J. Clean. Prod., 172, 1835-1847. https://doi.org/10.1016/j.jclepro.2017.12.003.
- Bideci, A., O zturk, H., Bideci, O.S. and Emiroglu, M. (2017), "Fracture energy and mechanical characteristics of self-compacting concretes including waste bladder tyre", Constr. Build. Mater., 149, 669-678. https://doi.org/10.1016/j.conbuildmat.2017.05.191.
- Britto, J.X. and Muthuraj, M.P. (2019), "Prediction of compressive strength of bacteria incorporated geopolymer concrete by using ANN and MARS", Struct. Eng. Mech., 70(6), 671-681. http://dx.doi.org/10.12989/sem.2019.70.6.671.
- Busic, R., Bensic, M., Milicevic, I. and Strukar, K. (2020), "Prediction models for the mechanical properties of self-compacting concrete with recycled rubber and silica fume", Mater., 13, 1821. https://doi.org/10.3390/ma13081821.
- Busic, R., Milicevic, I., Sipos, T.K. and Strukar, K. (2018), "Recycled rubber as an aggregate replacement in self-compacting concrete-literature overview", Mater., 11, 1729. https://doi.org/10.3390/ma11091729.
- Djelloul, O.K., Belkacem Menadi, B., Wardeh, G. and Kenai, S. (2018), "Performance of self-compacting concrete made with coarse and fine recycled concrete aggregates and ground granulated blast-furnace slag", Adv. Concrete Constr., 6(2), 103-121. http://dx.doi.org/10.12989/acc.2018.6.2.103.
- Emiroglu, M., Yildiz, S., Kelestemur, O. and Kelestemur, M.H. (2012), "Bond performance of rubber particles in the self-compacting concrete", Bond in Concrete 2012-Bond in New Materials and under Severe Conditions, Eds. J.W. Cairns, G. Metelli and G.A. Plizzari, 779-785.
- Ganesan, N., Bharati Raj, J. and Shashikala, A.P. (2013), "Flexural fatigue behavior of self-compacting rubberized concrete", Constr. Build. Mater., 44, 7-14. https://doi.org/10.1016/j.conbuildmat.2013.02.077.
- Ghaly, A.M. and Cahill IV, J.D. (2005), "Correlation of strength, rubber content, and water to cement ratio in rubberized concrete", Can. J. Civil Eng., 32, 1075-1081. https://doi.org/10.1139/l05-063.
- Guneyisi, E. (2010), "Fresh properties of self-compacting rubberized concrete incorporated with fly ash", Mater. Struct., 43, 1037-1048. https://doi.org/10.1617/s11527-009-9564-1.
- Guneyisi, E., Gesoglu, M., Naji, N. and Ipek, S. (2016), "Evaluation of the rheological behaviour of fresh self-compacting rubberized concrete by using the Herschel-Bulkley and modified Bingham models", Arch. Civil Mech. Eng., 16, 9-19. https://doi.org/10.1016/j.acme.2015.09.003.
- Gupta, T., Chaudhary, S. and Sharma, R.K. (2014), "Assessment of mechanical and durability properties of concrete containing waste rubber tire as fine aggregate", Constr. Build. Mater., 73, 562-574. https://doi.org/10.1016/j.conbuildmat.2014.09.102.
- Hadzima-Nyarko, M. and Milicevic, I. (2020), "Equations for prediction of rubberized concrete compressive strength: a literature review", New Mater. Civil Eng., 1st Edition, Eds: Pijush Samui, P., Kim, D., Iyer, N. and Chaudhary, S., Butterworth-Heinemann.
- Hadzima-Nyarko, M., Nyarko, E.K., Ademovic, N., Milicevic, I. and Kalman Sipos, T. (2019), "Modelling the influence of waste rubber on compressive strength of concrete by artificial neural networks", Mater., 12, 561. https://doi.org/10.3390/ma12040561.
- Hadzima-Nyarko, M., Nyarko, E.K., Lu, H. and Zhu, S. (2020), "Machine learning approaches for estimation of compressive strength of concrete", Eur. Phys. J. Plus, 135(8), 1-23. https://doi.org/c. https://doi.org/10.3390/ma12040561
- Hamza, B., Belkacem, M., Said, K. and Walid, Y. (2018), "Performance of self-compacting rubberized concrete", MATEC Web of Conferences, 149, 01070. https://doi.org/10.1051/matecconf/201814901070.
- Hilal, A.A. (2017), "Microstructure of concrete", High Performance Concrete Technology and Applications, Eds: Yilmaz, S. and Ozmen, H.B., IntechOpen.
- Hilal, N.N. (2017), "Hardened properties of self-compacting concrete with different crumb rubber size and content", Int. J. Sustain. Built Environ., 6, 191-206. https://doi.org/10.1016/j.ijsbe.2017.03.001.
- Hilal, N.N., Hama, S.M. and Salman, M.M. (2018), "The effect of Particle Size Distribution (PSD) of Rubberized Self-Compacting Concrete (RSCC)", J. Eng. Sustain. Develop., 22(2), 13-22. https://doi.org/10.31272/jeasd.2018.2.46.
- Ismail, M.K. and Hassan, A.A.A. (2016a), "Use of Metakaolin on enhancing the mechanical properties of self-consolidating concrete containing high percentages of crumb rubber", J. Clean. Prod., 125, 282-295. https://doi.org/10.1016/j.jclepro.2016.03.044.
- Ismail, M.K. and Hassan, A.A.A. (2017), "Impact resistance and mechanical properties of self-consolidating rubberized concrete reinforced with steel fibers", J. Mater. Civil Eng., 29(1), 04016193-1- 04016193-14. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001731.
- Ismail, M.K., De Grazia, M.T. and Hassan, A.A.A. (2015), "Mechanical properties of self-consolidating rubberized concrete with different supplementary cementing materials", Proceedings of International Conference on Transportation and Civil Engineering (ICTCE'15), London, March. https://doi.org/10.17758/UR.U0315331.
- Jovic, S., Radulovic, R., Kovacevic, M., Bozovic, R. and Sarkocevic, Z. (2019), "Estimation of important variables for strength of concrete with high performance based on neuro fuzzy logic approach", Struct. Concrete, 1-11. https://doi.org/10.1002/suco.201900330.
- Khalil, E., Abd-Elmohsen, M. and Anwar, A.M. (2015), "Impact resistance of rubberized self-compacting concrete", Water Sci., 29(1), 45-53. https://doi.org/10.1016/j.wsj.2014.12.002.
- Khaloo, A.R., Dehestani, M. and Rahmatabadi, P. (2008), "Mechanical properties of concrete containing a high volume of tire-rubber particles", Waste Manage., 28(12), 2472-2482. https://doi.org/10.1016/j.wasman.2008.01.015.
- Khatib, Z.K. and Bayomy, F.M. (1999), "Rubberized Portland cement concrete", J. Mater. Civil Eng., 11(3), 206-213. https://doi.org/10.1061/(ASCE)0899-1561(1999)11:3(206).
- Li, D., Zhuge, Y., Gravina, R. and Mills, J.E. (2018), "Compressive stress strain behavior of crumb rubber concrete (CRC) and application in reinforced CRC slab", Constr. Build. Mater., 166, 745-759. https://doi.org/10.1016/j.conbuildmat.2018.01.142.
- Li, N., Long, G. and Zhang S. (2014), "Properties of self-compacting concrete incorporating rubber and expanded clay aggregates", Key Eng. Mater., 629/630, 417-424. https://doi.org/10.4028/www.scientific.net/KEM.629-630.417.
- Long, G., Ma, K., Li, Z. and Xie, Y. (2012), "Self-compacting concrete reinforced by waste tyre rubber particle and emulsified asphalt", Second International Conference on Sustainable Construction Materials, Design, Performance, and Application, Wuhan, October.
- Miller, N.M. and Tehrani. F.M. (2017), "Mechanical properties of rubberized lightweight aggregate concrete", Constr. Build. Mater., 147, 264-271. https://doi.org/10.1016/j.conbuildmat.2017.04.155.
- Mishra, M. and Panda, K.C. (2015), "An experimental study on fresh and hardened properties of Self Compacting rubberized concrete", Ind. J. Sci. Technol., 8(29), https://doi.org/10.17485/ijst/2015/v8i29/86799.
- Neira, P., Bennun, L., Pradena, M. and Gomez, J. (2020), "Prediction of concrete compressive strength through artificial neural networks", Gradevinar, 72(7), 585-592. https://doi.org/10.14256/JCE.2438.2018.
- Padhi, S. and Panda, K.C. (2016), "Fresh and hardened properties of rubberized concrete using fine rubber and silpozz", Adv. Concrete Constr., 4(1), 49-69. http://dx.doi.org/10.12989/acc.2016.4.1.049.
- Presti, D.L. (2013), "Recycled Tyre Rubber Modified Bitumen for road asphalt mixtures", Constr. Build. Mater., 49, 863-881. https://doi.org/10.1016/j.conbuildmat.2013.09.007.
- Raj, B., Ganesan, N. and Shashikala, A.P. (2011), "Engineering properties of Self-Compacting rubberized concrete", J. Reinf. Plast. Compos., 30(23), 1923-1930. https://doi.org/10.1177/0731684411431356.
- Rasmussen, C.E. and Williams, C.K.I. (2006), Gaussian Processes for Machine Learning, The MIT Press, Cambridge, Massachusetts, USA.
- Ren, R., Liang, J.F., Liu, D., Gao, J. and Chen, L. (2020), "Mechanical behavior of crumb rubber concrete under axial compression", Adv. Concrete Constr., 9(3), 249-256. https://doi.org/10.12989/acc.2020.9.3.249.
- Roychand, R. Gravina, R., Zhuge, Y., Ma, X., Youssf, O. and Mills, J.E. (2020), "A comprehensive review on the mechanical properties of waste tire rubber concrete", Constr. Build. Mater., 237, 117651. https://doi.org/10.1016/j.conbuildmat.2019.117651.
- Sandrk Nukic, I. and Milicevic, I. (2019), "Fostering ecoinnovation: Waste Tyre Rubber and circular economy in Croatia", Interdiscip. Descr. Complex Syst., 17(2-B), 326-344. https://doi.org/10.7906/indecs.17.2.9.
- Turatsinze, A. and Garros, M. (2008), "On the modulus of elasticity and strain capacity of Self-Compacting Concrete incorporating rubber aggregates", Resourc. Conserv. Recyc., 52, 1209-1215. https://doi.org/10.1016/j.resconrec.2008.06.012.
- Uygunogl, T. and Topcu, I.B. (2010), "The role of scrap rubber particles on the drying shrinkage and mechanical properties of self-consolidating mortars", Constr. Build. Mater., 24(7), 1141-1150. https://doi.org/10.1016/j.conbuildmat.2009.12.027.
- Williams, K.C. and Partheeban, P. (2018), "An experimental and numerical approach in strength prediction of reclaimed rubber concrete", Adv. Concrete Constr., 6(1), 87-102. https://doi.org/10.12989/acc.2018.6.1.087.
- Yang, G., Chen, X., Guo, S. and Xuan, W. (2019), "Dynamic mechanical performance of Self-Compacting concrete containing crumb rubber under high strain rates", KSCE J. Civil Eng., 23(8), 3669-3681. https://doi.org/10.1007/s12205-019-0024-3.
- Yildirim, S.T. and Duygun, N.P. (2017), "Mechanical and physical performance of concrete including waste electrical cable rubber", IOP Conf. Ser.: Mater. Sci. Eng., 245, 022054. https://doi.org/10.1088/1757-899X/245/2/022054.
- Youssf, O., El-Gawady, M.A., Mills, J.E. and Maa, X. (2014), "An experimental investigation of crumb rubber concrete confined by fibre reinforced polymer tubes", Constr. Build. Mater., 58, 522-532. https://doi.org/10.1016/j.conbuildmat.2013.12.007.
- Yu, J. (2016), "Research on the mechanical properties of self-compacting waste rubberised aggregate concrete", Proceedings of the 2016 International Conference on Civil, Transportation and Environment (ICCTE 2016), Guangzhou, China, January.
- Yung, W.H., Yung, L.C. and Hua, L.H. (2013), "A study of the durability properties of waste tire rubber applied to self-compacting concrete", Constr. Build. Mater., 41, 665-672. https://doi.org/10.1016/j.conbuildmat.2012.11.019.
- Zain, M.F.M., Abd, S.M., Sopian, K., Jamil, M. and Che-Ani, A.I. (2008), "Mathematical regression model for the prediction of concrete strength", Proceedings of the Tenth WSEAS International Conference on Mathematical Methods, Computational Techniques and Intelligent Systems (MAMECTIS '08), Corfu, Greece, October.
- Zaoiai, S., Makani, A., Tafraoui, A. and Benmerioul, F. (2016), "Optimization and mechanical characterization of self-compacting concrete incorporating rubber aggregates", Asia. J. Civil Eng. (BHRC), 17(6), 817-829.
피인용 문헌
- Modeling of Compressive Strength of Self-Compacting Rubberized Concrete Using Machine Learning vol.14, pp.15, 2021, https://doi.org/10.3390/ma14154346