DOI QR코드

DOI QR Code

Effect of nonlinear FG-CNT distribution on mechanical properties of functionally graded nano-composite beam

  • Zerrouki, Rachid (Faculty of Applied Sciences, Synthesis and Catalysis Laboratory LSCT, University of Tiaret) ;
  • Karas, Abdelkader (Faculty of Applied Sciences, Synthesis and Catalysis Laboratory LSCT, University of Tiaret) ;
  • Zidour, Mohamed (University of Tiaret) ;
  • Bousahla, Abdelmoumen Anis (Laboratoire de Modelisation et Simulation Multi-echelle, Universite de Sidi Bel Abbes) ;
  • Tounsi, Abdelouahed (Material and Hydrology Laboratory, Civil Engineering Department, Faculty of Technology, University of SidiBel Abbes) ;
  • Bourada, Fouad (Material and Hydrology Laboratory, Civil Engineering Department, Faculty of Technology, University of SidiBel Abbes) ;
  • Tounsi, Abdeldjebbar (Laboratoire de Modelisation et Simulation Multi-echelle, Universite de Sidi Bel Abbes) ;
  • Benrahou, Kouider Halim (Material and Hydrology Laboratory, Civil Engineering Department, Faculty of Technology, University of SidiBel Abbes) ;
  • Mahmoud, S.R. (GRC Department, Jeddah Community College, King Abdulaziz University)
  • 투고 : 2020.04.10
  • 심사 : 2021.01.22
  • 발행 : 2021.04.25

초록

This work focused on the novel numerical tool for the bending responses of carbon nanotube reinforced composites (CNTRC) beams. The higher order shear deformation beam theory (HSDT) is used to determine strain-displacement relationships. A new exponential function was introduced into the carbon nanotube (CNT) volume fraction equation to show the effect of the CNT distribution on the CNTRC beams through displacements and stresses. To determine the mechanical properties of CNTRCs, the rule of the mixture was employed by assuming that the single-walled carbon nanotubes (SWCNTs)are aligned and distributed in the matrix. The governing equations were derived by Hamilton's principle, and the mathematical models presented in this work are numerically provided to verify the accuracy of the present theory. The effects of aspect ratio (l/d), CNT volume fraction (Vcnt), and the order of exponent (n) on the displacement and stresses are presented and discussed in detail. Based on the analytical results. It turns out that the increase of the exponent degree (n) makes the X-beam stiffer and the exponential CNTs distribution plays an indispensable role to improve the mechanical properties of the CNTRC beams.

키워드

참고문헌

  1. Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing postbuckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.
  2. Akbas, S.D. (2016), "Analytical solutions for static bending of edge cracked micro beams'", Struct. Eng. Mech., 59(3), 579-599. https://doi.org/10.12989/sem.2016.59.3.579.
  3. Akbas, S.D. (2017), "Thermal effects on the vibration of functionally graded deep beams with porosity", Int. J. Appl. Mech., 9(5), 1750076. https://doi.org/10.1142/S1758825117500764.
  4. Akbas, S.D. (2018), "Thermal post-buckling analysis of a laminated composite beam", Struct. Eng. Mech., 67(4), 337-346. https://doi.org/10.12989/sem.2018.67.4.337.
  5. Arani, A.G., Cheraghbak, A. and Kolahchi, R. (2016), "Dynamic buckling of FGM viscoelastic nano-plates resting on orthotropic elastic medium based on sinusoidal shear deformation theory", Struct. Eng. Mech., 60(3), 489-505. https://doi.org/10.12989/sem.2016.60.3.489.
  6. Asiri, S.A., Akbas, S.D. and Eltaher, M.A. (2020), "Dynamic analysis of layered functionally graded viscoelastic deep beams with different boundary conditions due to a pulse load", Int. J. Appl. Mech., 12(5), 2050055. https://doi.org/10.1142/S1758825120500556.
  7. Avcar, M. and Mohammed, W.K.M. (2018), "Free vibration of functionally graded beams resting on Winkler-Pasternak foundation", Arab. J. Geosci., 11(10), 232. https://doi.org/10.1007/s12517-018-3579-2.
  8. Barati, M.R. (2017a), "Vibration analysis of FG nanoplates with nanovoids on viscoelastic substrate under hygro-thermo-mechanical loading using nonlocal strain gradient theory", Struct. Eng. Mech., 64(6), 683-693. https://doi.org/10.12989/sem.2017.64.6.683.
  9. Barati, M.R. (2017b), "On wave propagation in nanoporous materials", Int. J. Eng. Sci., 116, 1-11. https://doi.org/10.1016/j.ijengsci.2017.03.007.
  10. Civalek, O., Dastjerdi, S., Akbas, S.D. and Akgoz, B. (2020), "Vibration analysis of carbon nanotube-reinforced composite microbeams", Math. Meth. Appl. Sci.. https://doi.org/10.1002/mma.7069.
  11. Dash, S., Mehar, K., Sharma, N., Mahapatra, T.R. and Panda, S.K. (2018), "Modal analysis of FG sandwich doubly curved shell structure", Struct. Eng. Mech., 68(6), 721-733. https://doi.org/10.12989/sem.2018.68.6.721.
  12. Dash, S., Mehar, K., Sharma, N., Mahapatra, T.R. and Panda, S.K. (2019), "Finite element solution of stress and flexural strength of functionally graded doubly curved sandwich shell panel", Earthq. Struct., 16(1), 55-67. https://doi.org/10.12989/eas.2019.16.1.055.
  13. Dihaj, A., Zidour, M., Meradjah, M., Rakrak, K., Heireche, H. and Chemi, A. (2018), "Free vibration analysis of chiral double-walled carbon nanotube embedded in an elastic medium using non-local elasticity theory and Euler Bernoulli beam model", Struct. Eng. Mech., 65(3), 335-342. https://doi.org/10.12989/sem.2018.65.3.335.
  14. Ebrahimi, F. and Barati, M.R. (2017), "Vibration analysis of embedded size dependent FG nanobeams based on third-order shear deformation beam theory", Struct. Eng. Mech., 61(6), 721-736. https://doi.org/10.12989/sem.2017 .61.6.721.
  15. Ebrahimi, F. and Barati, M.R. (2018), "A unified formulation for modeling of inhomogeneous nonlocal beams", Struct. Eng. Mech., 66(3), 369-377. https://doi.org/10.12989/sem.2018.66.3.369.
  16. Eltaher, M.A., Alshorbagy, A.E. and Mahmoud, F.F. (2013), "Determination of neutral axis position and its effect on natural frequencies of functionally graded macro/nanobeams", Compos. Struct., 99, 193-201. https://doi.org/10.1016/j.compstruct.2012.11.039.
  17. Esawi, A.M.K. and Farag, M.M. (2007), "Carbon nanotube reinforced composites: potential and current challenges", Mater. Des., 28, 2394-2401. https://doi.org/10.1016/j.matdes.2006.09.022.
  18. Hone, J., Llaguno, M.C., Nemes, N.M., Johnson, A.T., Fischer, J.E., Walters, D.A., ... and Smalley, R.E. (2000), "Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films", Appl. Phys. Lett., 77(5), 666-668. https://doi.org/10.1063/1.127079.
  19. Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(6348), 56-58. https://doi.org/10.1038/354056a0.
  20. Jalaei, M.H. and Civalek, O. (2019), "On dynamic instability of magnetically embedded viscoelastic porous FG nanobeam", Int. J. Eng. Sci., 143, 14-32. https://doi.org/10.1016/j.ijengsci.2019.06.013.
  21. Kadoli, R., Akhtar, K. and Ganesan, N. (2008), "Static analysis of functionally graded beams using higher order shear deformation theory", Appl. Math. Model., 32(12), 2509-2525. https://doi.org/10.1016/j.apm.2007.09.015.
  22. Kolahchi, R., Bidgoli, A.M.M. and Heydari, M.M. (2015). Size-dependent bending analysis of FGM nano-sinusoidal plates resting on orthotropic elastic medium", Struct. Eng. Mech., 55(5), 1001-1014. http://dx.doi.org/10.12989/sem.2015.55.5.1001.
  23. Lu, P., Lee, H.P., Lu, C. and Zhang, P.Q. (2007), "Application of nonlocal beam models for carbon nanotubes", Int. J. Solid. Struct., 44(16), 5289-5300. https://doi.org/10.1016/j.ijsolstr.2006.12.034.
  24. Mehar, K. and Panda, S.K. (2018a), "Nonlinear finite element solutions of thermoelastic flexural strength and stress values of temperature dependent graded CNT-reinforced sandwich shallow shell structure", Struct. Eng. Mech., 67(6), 565-578. https://doi.org/10.12989/sem.2018.67.6.565.
  25. Mehar, K. and Panda, S.K. (2018b), "Thermoelastic flexural analysis of FG-CNT doubly curved shell panel", Aircraft Eng. Aerosp. Technol., 90(1), 11-23. https://doi.org/10.1108/AEAT11-2015-0237.
  26. Mehar, K. and Panda, S.K. (2019a), "Theoretical deflection analysis of multi-walled carbon nanotube reinforced sandwich panel and experimental verification", Compos. Part B: Eng., 167, 317-328. https://doi.org/10.1016/j.compositesb.2018.12.058.
  27. Mehar, K. and Panda, S.K. (2019b), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., 7(3), 181. http://dx.doi.org/10.12989/anr.2019.7.3.181.
  28. Mehar, K. and Panda, S.K. (2020), "Nonlinear deformation and stress responses of a graded carbon nanotube sandwich plate structure under thermoelastic loading", Acta Mechanica, 231(3), 1105-1123. https://doi.org/10.1038/354056a0.
  29. Mehar, K., Mahapatra, T.R., Panda, S.K., Katariya, P.V. and Tompe, U.K. (2018c), "Finite-element solution to nonlocal elasticity and scale effect on frequency behavior of shear deformable nanoplate structure", J. Eng. Mech., 144(9), 04018094. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001519.
  30. Mehar, K., Mishra, P.K. and Panda, S.K. (2020), "Numerical investigation of thermal frequency responses of graded hybrid smart nanocomposite (CNT-SMA-Epoxy) structure", Mech. Adv. Mater. Struct., 1-13. https://doi.org/10.1080/15376494.2020.1725193.
  31. Mehar, K., Panda, S.K. and Mahapatra, T.R (2018b), "Thermoelastic deflection responses of CNT reinforcedsandwich shell structure using finite-element method", Scientia Iranica. Tran. B, Mech. Eng., 25(5), 2722-2737. https://doi.org/10.24200/sci.2017.4525.
  32. Mehar, K., Panda, S.K. and Mahapatra, T.R (2019a), "Large deformation bending responses of nanotube-reinforced polymer composite panel structure: Numerical and experimental analyses", Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng., 233(5), 1695-1704. https://doi.org/10.1177%2F0954410018761192. https://doi.org/10.1177%2F0954410018761192
  33. Mehar, K., Panda, S.K. and Mahapatra, T.R. (2018a), "Nonlinear frequency responses of functionally graded carbon nanotube-reinforced sandwich curved panel under uniform temperature field", Int. J. Appl. Mech., 10(3), 1850028. https://doi.org/10.1142/S175882511850028X.
  34. Mehar, K., Panda, S.K., Devarajan, Y. and Choubey, G. (2019b), "Numerical buckling analysis of graded CNT-reinforced composite sandwich shell structure under thermal loading", Compos. Struct., 216, 406-414. https://doi.org/10.1016/j.compstruct.2019.03.002.
  35. Mohammadimehr, M. and Alimirzaei, S. (2017), "Buckling and free vibration analysis of tapered FG-CNTRC micro Reddy beam under longitudinal magnetic field using FEM", Smart Struct. Syst., 19, 309-322. https://doi.org/10.12989/sss.2017.19.3.309.
  36. Moisala, A., Li, Q., Kinloch, I.A. and Windle, A.H. (2006), "Thermal and electrical conductivity of single-and multi-walled carbon nanotube-epoxy composites", Compos. Sci. Technol., 66(10), 1285-1288. https://doi.org/10.1016/j.compscitech.2005.10.016.
  37. Othman, M. and Fekry, M. (2018), "Effect of rotation and gravity on generalized thermo-viscoelastic medium with voids", Multidisc. Model. Mater. Struct., 14(2), 322-338. https://doi.org/10.1108/MMMS-08-2017-0082.
  38. Panjehpour, M., Loh, E.W.K. and Deepak, T.J. (2018), "Structural insulated panels: State-of-the-art", Trend. Civil Eng. Its Arch., 3(1) 336-340. https://doi.org/10.32474/TCEIA.2018.03.000151.
  39. Patel, K.K. and Suresh, K. (2017), "Bending analysis of CNT reinforced metal matrix composite rectangular plates using higher order shear deformation theory", Int. J. Res. Appl. Sci. Eng. Technol., 5(XI), 2231-2244. https://doi.org/10.22214/ijraset.2017.11317.
  40. Rakrak, K., Zidour, M., Heireche, H., Bousahla, A.A. and Chemi, A. (2016), "Free vibration analysis of chiral double-walled carbon nanotube using non-local elasticity theory", Adv. Nano Res., 4(1), 31-44. https://doi.org/10.12989/anr.2016.4.1.000.
  41. Reissner, E. (1945), "The effect of transverse shears deformation on the bending of elastic plates", J. Appl. Mech., 12, 69-77. https://doi.org/10.1115/1.4009435.
  42. Rodney, S.R and Donald, C.L. (1995), "Mechanical and thermal properties of carbon nanotubes", Carbon, 33(7), 925-930. https://doi.org/10.1016/0008-6223(95)00021-5.
  43. Sayyad, A.S. and Ghugal, Y.M. (2020), "Bending, buckling and free vibration analysis of size-dependent nanoscale FG beams using refined models and Eringen's nonlocal theory", Int. J. Appl. Mech., 12(01), 2050007. https://doi.org/10.1142/S1758825120500076.
  44. Shen, H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026.
  45. Simsek, M. (2010), "Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories", Nucl. Eng. Des., 240(4), 697-705. https://doi.org/10.1016/j.nucengdes.2009.12.013.
  46. Tagrara, S.H., Benachour, A., Bouiadjra, M.B. and Tounsi, A. (2015), "On bending, buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams", Steel Compos. Struct., 19(5), 1259-1277. https://doi.org/10.12989/scs.2015.19.5.1259.
  47. Thostenson, E.T., Ren, Z. and Chou, T.W. (2001), "Advances in the science and technology of carbon nanotubes and their composites: a review", Compos. Sci. Technol., 61(13), 1899-1912. https://doi.org/10.1016/S0266-3538(01) 00094-X.
  48. Timesli, A. (2020), "An efficient approach for prediction of the nonlocal critical buckling load of double-walled carbon nanotubes using the nonlocal Donnell shell theory", SN Appl. Sci., 2(3), 1-12. https://doi.org/10.1007/s42452-020-2182-9.
  49. Trotter, H., Phillips, R., Ni, B., Hu, Y., Sinnott, S.B., Mikulski, P.T. and Harrison, J.A. (2005), "Effect of filling on the compressibility of carbon nanotubes: predictions from molecular dynamics simulations", J. Nanosci. Nanotech., 5(4), 536-541. https://doi.org/10.1166/jnn.2005.081.
  50. Vel, S.S. and Batra, R.C. (2003), "Exact thermoelasticity solution for cylindrical bending deformations of functionally graded plates", IUTAM Symposium on Dynamics of Advanced Materials and Smart Structures, 429-438. https://doi.org/10.1007/978-94-017-0371-0_42.
  51. Wang, Q. (2005), "Wave propagation in carbon nanotubes via nonlocal continuum mechanics", J. Appl. Phys., 98(12), 124301. https://doi.org/10.1063/1.2141648.
  52. Wattanasakulpong, N. and Ungbhakorn, V. (2013), "Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation", Comput. Mater. Sci., 71, 201-208. https://doi.org/10.1016/j.commatsci.2013.01.028.
  53. Weinan, E. and Huang, Z. (2001), "Matching conditions in atomistic-continuum modeling of materials", Phys. Rev. Lett., 87(13), 135501. https://doi.org/10.1103/PhysRevLett.87.135501.
  54. Wu, C.P., Chen, S.J. and Chiu, K.H. (2010), "Three-dimensional static behavior of functionally graded magneto-electro-elastic plates using the modified Pagano method", Mech. Res. Commun., 37(1), 54-60. https://doi.org/10.1016/j.mechrescom.2009.10.003.
  55. Yamanouchi, M., Koizumi, M., Hirai, T. and Shiota, I. (1990), "Proceedings of the first internationalsymposium on functionally gradientmaterials", Sendai, Japan.
  56. Yas, M.H. and Samadi, N. (2012), "Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation", Int. J. Press. Ves. Pip., 98, 119-128. https://doi.org/10.1016/j.ijpvp.2012.07.012.
  57. Yu, M.F., Files, B.S., Arepalli, S. and Ruoff, R.S. (2000), "Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties", Phys. Rev. Lett., 84(24), 5552. https://doi.org/10.1103/PhysRevLett.84.5552.
  58. Yuksel, Y.Z. and Akbas, S.D. (2019), "Buckling analysis of a fiber reinforced laminated composite plate with porosity", J. Comput. Appl. Mech., 50(2), 375-380. https://dx.doi.org/10.22059/jcamech.2019.291967.448.
  59. Zhou, P., Liu, Y. and Liang, X. (2018), "Analytical solutions for large deflections of functionally graded beams based on layer-graded beam model", Int. J. Appl. Mech., 10(9), 1850098. https://doi.org/10.1142/S1758825118500989.

피인용 문헌

  1. Analytical Solution of Composite Curved I-Beam considering Tangential Slip under Uniform Distributed Load vol.2021, 2021, https://doi.org/10.1155/2021/4094753
  2. Free vibration analysis of carbon nanotube RC nanobeams with variational approaches vol.11, pp.2, 2021, https://doi.org/10.12989/anr.2021.11.2.157