DOI QR코드

DOI QR Code

Nonlinear vibration and stability of FG nanotubes conveying fluid via nonlocal strain gradient theory

  • Dang, Van-Hieu (TNU - Thai Nguyen University of Technology) ;
  • Sedighi, Hamid M. (Mechanical Engineering Department, Faculty of Engineering, Shahid Chamran University of Ahvaz) ;
  • Chan, Do Quang (University of Transport Technology) ;
  • Civalek, Omer (China Medical University) ;
  • Abouelregal, Ahmed E. (Department of Mathematics, College of Science and Arts, Jouf University)
  • Received : 2020.08.16
  • Accepted : 2021.02.19
  • Published : 2021.04.10

Abstract

In this work, a model of a functionally graded (FG) nanotube conveying fluid embedded in an elastic medium is developed based on the nonlocal strain gradient theory (NSGT) in conjunction with Euler-Bernoulli beam theory (EBT). The main objective of this research is to investigate the nonlinear vibration and stability analysis of fluid-conveying nanotubes. The governing equations of motion are derived by means of Hamiltonian principle. The analytical expressions of nonlinear frequencies and critical flow velocities for two different types of boundary conditions including pinned-pinned (P-P) and clamped-clamped (C-C) conditions are obtained by employing Galerkin method as well as Hamiltonian Approach (HA). Comparison of the obtained results with the published works show the acceptable accuracy of the current solutions. The effects of the power-law index, the nonlocal and material length scale parameters and the elastic medium on the stability and nonlinear responses of FG nanotubes are thoroughly investigated and discussed.

Keywords

References

  1. Abdelaziz, H.H., Meziane, M.A.A, Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2017), "An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions", Steel Compos. Struct., 25(6), 693-704. http://dx.doi.org/10.12989/scs.2017.25.6.693.
  2. Ahmadi, H. and Foroutan, K. (2019), "Nonlinear vibration of stiffened multilayer FG cylindrical shells with spiral stiffeners rested on damping and elastic foundation in thermal environment", Thin Wall. Struct., 145, 106388. https://doi.org/10.1016/j.tws.2019.106388.
  3. Aifantis, E.C. (1992), "On the role of gradients in the localization of deformation and fracture", Int. J. Eng. Sci., 30(10), 1279-1299. https://doi.org/10.1016/0020-7225(92)90141-3.
  4. Akgoz, B. and Civalek, O. (2013), "Buckling analysis of functionally graded microbeams based on the strain gradient theory", Acta Mechanica, 224, 2185-2201. https://doi.org/10.1007/s00707-013-0883-5.
  5. Akgoz, B. and Civalek, O. (2014), "Longitudinal vibration analysis for microbars based on strain gradient elasticity theory", J. Vib. Control, 20, 606-616. https://doi.org/10.1177/1077546312463752.
  6. Akgoz, B. and Civalek, O. (2015), "A microstructure-dependent sinusoidal plate model based on the strain gradient elasticity theory", Acta Mechanica, 226(7), 2277-2294. https://doi.org/10.1007/s00707-015-1308-4.
  7. Akgoz, B. and Civalek, O. (2016). "Bending analysis of embedded carbon nanotubes resting on an elastic foundation using strain gradient theory", Acta Astronautica, 119, 1-12. https://doi.org/10.1016/j.actaastro.2015.10.021.
  8. Akgoz, B. and Civalek. O. (2017), "A size-dependent beam model for stability of axially loaded carbon nanotubes surrounded by Pasternak elastic foundation", Compos. Struct., 176, 1028-1038. https://doi.org/10.1016/j.compstruct.2017.06.039.
  9. Amiri, A., Pournaki, I.J., Jafarzadeh, E., Shabani, R. and Rezazadeh, G. (2016), "Vibration and instability of fluid‑conveyed smart micro‑tubes based on magneto‑electro‑elasticity beam model", Microfluid Nanofluid, 20, 38. https://doi.org/10.1007/s10404-016-1706-5.
  10. Ansari, R., Norouzzadeh, A., Gholami, R., Shojaei M.F. and Hosseinzadeh, M. (2014), "Size-dependent nonlinear vibration and instbility of embedded fluid-conveying SWBNNTs in thermal environment", Physica E, 61, 148-157. https://doi.org/10.1016/j.physe.2014.04.004.
  11. Apuzzo, A., Barretta, R., Canadija, M., Feo, L., Luciano, R. and Sciarra, F.M. (2017), "A closed-form model for torsion of nanobeams with an enhanced nonlocal formulation", Compos. Part B: Eng., 108, 315-324. https://doi.org/10.1016/j.compositesb.2016.09.012.
  12. Bahaadini, R., Hosseini, M. and Jamali, B. (2018a), "Flutter and divergence instability of supported piezoelectric nanotubes conveying fluid", Physica B: Condens. Matter., 529, 57-65. https://doi.org/10.1016/j.physb.2017.09.130.
  13. Bahaadini, R., Saidi, A.R. and Hosseini, M. (2018b), "Dynamic stability of fluid-conveying thin-walled rotating pipes reinforced with functionally graded carbon nanotubes", Acta Mech., 229, 5013-5029. https://doi.org/10.1007/s00707-018-2286-0.
  14. Bakhadda, B., Bouiadjra, M.B., Bourada, F., Bousahla, A.A., Tounsi, A. and Mahmoud, S. (2018), "Dynamic and bending analysis of carbon nanotube-reinforced composite plates with elastic foundation", Wind Struct., 27(5), 311-324. https://doi.org/10.12989/was.2018.27.5.311.
  15. Barati, M.R. (2017), "Vibration analysis of FG nanoplates with nanovoids on viscoelastic substrate under hygro thermomechanical loading using nonlocal strain gradient theory", Struct. Eng. Mech., 64, 683-693. https://doi.org/10.12989/sem.2017.64.6.683.
  16. Barretta, R. and Sciarra, F.M. (2018), "Constitutive boundary conditions for nonlocal strain gradient elastic nano-beams", Int. J. Eng. Sci., 130, 187-198. https://doi.org/10.1016/j.ijengsci.2018.05.009.
  17. Bellifa, H., Benrahou, K.H., Bousahla, A.A., Tounsi, A. and Mahmoud, S. (2017), "A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams", Struct. Eng. Mech., 62(6), 695-702. https://doi.org/10.12989/sem.2017.62.6.695.
  18. Berghouti, H., Adda Bedia, E., Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., 7(5), 351-364. http://dx.doi.org/10.12989/anr.2019.7.5.351.
  19. Bouadi, A., Bousahla, A.A., Houari, M.S.A., Heireche, H. and Tounsi, A. (2018), "A new nonlocal HSDT for analysis of stability of single layer graphene sheet", Adv. Nano Res., 6(2), 147-162. https://doi.org/10.12989/anr.2018.6.2.147.
  20. Cheng, Q., Liu, Y., Wang, G., Liu, H., Jin, M. and Li, R. (2019), "Free vibration of a fluid-conveying nanotube constructed by carbon nanotube and boron nitride nanotube", Physica E, 109, 183-190. https://doi.org/10.1016/j.physe.2018.08.026.
  21. Civalek, O. (2017), "Free vibration of carbon nanotubes reinforced (CNTR) and functionally graded shells and plates based on FSDT via discrete singular convolution method", Compos. B: Eng., 111, 45-59. https://doi.org/10.1016/j.compositesb.2016.11.030.
  22. Civalek, O., Dastjerdi, S., Akbas, S.D. and Akgoz, B. (2020), "Vibration analysis of carbon nanotube-reinforced composite microbeams", Math. Meth. Appl. Sci., https://doi.org/10.1002/mma.7069.
  23. Civalek, O., Uzun, B., Yayli, M.O. and Akgoz, B. (2020), "Size-dependent transverse and longitudinal vibrations of embedded carbon and silica carbide nanotubes by nonlocal finite element method". Eur. Phys. J. Plus, 135, 381. https://doi.org/10.1140/epjp/s13360-020-00385-w.
  24. Dai, H.L., Wang, L., Abdelkefi, A. and Ni, Q. (2015), "On nonlinear behavior and buckling of fluid-transporting nanotubes", Int. J. Eng. Sci., 87, 13-22. https://doi.org/10.1016/j.ijengsci.2014.11.005.
  25. Dastjerdi, S., Akgoz, B. and Civalek, O. (2020), "On the effect of viscoelasticity on behavior of gyroscopes", Int. J. Eng. Sci., 149, 103236. https://doi.org/10.1016/j.ijengsci.2020.103236.
  26. Ebrahimi, F. and Barati, M.R. (2017), "Vibration analysis of embedded size dependent FG nanobeams based on third-order shear deformation beam theory", Struct. Eng. Mech., 61(6), 721-736. http://dx.doi.org/10.12989/sem.2017.61.6.721.
  27. Ebrahimi, F. and Barati, M.R. (2018), "Wave propagation analysis of smart strain gradient piezo-magneto-elastic nonlocal beams", Struct. Eng. Mech., 66, 237-248. http://dx.doi.org/10.12989/sem.2018.66.2.237.
  28. Ebrahimi, F., Barati, M.R. and Civalek, O. (2020), "Application of Chebyshev-Ritz method for static stability and vibration analysis of nonlocal microstructure-dependent nanostructures", Eng. Comput., 36, 953-964. https://doi.org/10.1007/s00366-019-00742-z.
  29. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54, 4703-4710. https://doi.org/10.1063/1.332803.
  30. Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10, 233-248. https://doi.org/10.1016/0020-7225(72)90039-0.
  31. Gao, Y., Xiao, W.S. and Zhu, H. (2019), "Nonlinear vibration of functionally graded nano-tubes using nonlocal strain gradient theory and a two-steps perturbation method", Struct. Eng. Mech., 69(2), 205-219. https://doi.org/10.12989/sem.2019.69.2.205.
  32. Gibson, R.F., Ayorinde, E.O. and Wen, Y.F. (2007), "Vibrations of carbon nanotubes and their composites: A review", Compos. Sci. Tech., 67, 1-28. https://doi.org/10.1016/j.compscitech.2006.03.031.
  33. He, C.H., Liu, C., He, J.H., Shirazi, A.H., Mohammad-Sedighi, H., (2021), "Passive atmospheric water harvesting utilizing an ancient chinese ink slab", Facta Univ., Ser.: Mech. Eng., https://doi.org/10.22190/FUME201203001H.
  34. He, J.H. (2002), "Preliminary report on the energy balance for nonlinear oscillations", Mech. Res. Commun., 29, 107-111. https://doi.org/10.1016/S0093-6413(02)00237-9.
  35. He, J.H. (2010), "Hamiltonian approach to nonlinear oscillators", Phys. Lett. A, 374(23), 2312-2314. https://doi.org/10.1016/j.physleta.2010.03.064.
  36. He, J.H., Hou, W.F., Qie, N., Gepreel, K.A., Shirazi, A.H. and Mohammad-Sedighi, H. (2021), "Hamiltonian-based frequency-amplitude formulation for nonlinear oscillators", Facta Univ., Ser.: Mech. Eng., https://doi.org/10.22190/FUME201205002H.
  37. Jalaei, M. and Civalek, O. (2019), "On dynamic instability of magnetically embedded viscoelastic porous FG nanobeam", Int. J. Eng. Sci., 143, 14-32. https://doi.org/10.1016/j.ijengsci.2019.06.013.
  38. Kaghazian, A., Hajnayeb, A. and Foruzande, H. (2017), "Free vibration analysis of a piezoelectric nanobeam using nonlocal elasticity theory", Struct. Eng. Mech., 61(5), 617-624. https://doi.org/10.12989/sem.2017.61.5.617.
  39. Karami, B., Janghorban, M., Shahsavari, D. and Tounsi, A. (2018), "A size-dependent quasi-3D model for wave dispersion analysis of FG nanoplates", Steel Compos. Struct., 28(1), 99-110. https://doi.org/10.12989/sem.2019.69.5.487.
  40. Kim, J., Zur, K.K. and Reddy, J.N. (2019), "Bending, free vibration, and buckling of modified couples stress-based functionally graded porous micro-plates", Compos. Struct., 209, 879-888. https://doi.org/10.1016/j.compstruct.2018.11.023.
  41. Koizumi, M. (1997), "FGM activities in Japan", Composites Part B: Engineering, 28(1-2), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9.
  42. Lam, D.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003). "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solid., 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X.
  43. Li, L, and Hu, Y. (2017), "Post-buckling analysis of functionally graded nanobeams incorporating nonlocal stress and microstructure-dependent strain gradient effects", Int. J. Mech. Sci., 120, 159-170. https://doi.org/10.1016/j.ijmecsci.2016.11.025.
  44. Li, L., Hu, Y., Li, X. and Ling, L. (2016), "Size-dependent effects on critical flow velocity of fluid-conveying microtubes via nonlocal strain gradient theory", Microfluid Nanofluid, 20, 76. https://doi.org/10.1007/s10404-016-1739-9.
  45. Liang, F., Gao, A. and Yang, X.D. (2020), "Dynamical analysis of spinning functionally graded pipes conveying fluid with multiple spans", Appl. Math. Model., 83, 454-469. https://doi.org/10.1016/j.apm.2020.03.011.
  46. Lim, C.W., Zhang, G. and Reddy, J.N. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solid., 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001.
  47. Lotfan, S., Fathi, R. and Ettefagh, M.M. (2016), "Size-dependent nonlinear vibration analysis of carbon nanotubes conveying multiphase flow", Int. J. Mech. Sci., 115-116, 723-735. https://doi.org/10.1016/j.ijmecsci.2016.07.034.
  48. Mahmood, A.A., Mirdamadi, H.R. and Ghayour, M. (2013), "Coupled effects of nano-size, stretching, and slip boundary conditions on nonlinear vibrations of nano-tube conveying fluid by homotopy analysis method", Physica E: Low Dimen. Syst. Nanostruct., 52, 77-85. https://doi.org/10.1016/j.physe.2013.03.031.
  49. Mahmoudpour, E., Hashemi, Sh.H. and Faghidian, S.A. (2018), "A nonlocal strain gradient theory for nonlinear free and forced vibration of embedded thick FG double layered nanoplates", Struct. Eng. Mech., 68, 103-119. https://doi.org/10.12989/sem.2018.68.1.103.
  50. Mercan, K. and Civalek, O. (2016), "DSC method for buckling analysis of boron nitride nanotube (BNNT) surrounded by an elastic matrix", Compos. Struct., 143, 300-309. https://doi.org/10.1016/j.compstruct.2016.02.040.
  51. Nejad, M.Z., Hadi, A. and Farajpour, A. (2017), "Consistent couple-stress theory for free vibration analysis of Euler-Bernoulli nano-beams made of arbitrary bi-directional functionally graded materials", Struct. Eng. Mech., 63(2), 161-169. http://dx.doi.org/10.12989/sem.2017.63.2.161.
  52. Nematollahi, M.A., Jamali, B. and Hosseini, M. (2020), "Fluid velocity and mass ratio identification of piezoelectric nanotube conveying fluid using inverse analysis", Acta Mech., 231, 683-700. https://doi.org/10.1007/s00707-019-02554-0.
  53. Nikkar, A., Rouhi, S. and Ansari, R. (2017), "Finite element modeling of the vibrational behavior of multi-walled nested silicon-carbide and carbon nanotubes", Struct. Eng. Mech., 64(3), 329-337. http://dx.doi.org/10.12989/sem.2017.64.3.239.
  54. Ouakad, H.M. and Sedighi, H.M. (2016), "Rippling effect on the structural response of electrostatically actuated single-walled carbon nanotube based NEMS actuators", Int. J. Nonlin. Mech., 87, 97-108. https://doi.org/10.1016/j.ijnonlinmec.2016.09.009.
  55. Ouakad, H.M., Valipour, A., Zur, K.K., Sedighi, H.M. and Reddy, J.N. (2020), "On the nonlinear vibration and static deflection problems of actuated hybrid nanotubes based on the stress-driven nonlocal integral elasticity", Mech. Mater., 148, 103532. https://doi.org/10.1088/1402-4896/ab793f.
  56. Parsa, A. and Mahmoudpour, E. (2019), "Nonlinear free vibration analysis of embedded flexoelectric curved nanobeams conveying fluid and submerged in fluid via nonlocal strain gradient elasticity theory", Microsyst. Technol., 25, 4323-4339. https://doi.org/10.1007/s00542-019-04408-0.
  57. Qie, N., Houa, W.F. and He, J.H. (2021), "The fastest insight into the large amplitude vibration of a string", Rep. Mech. Eng., 2(1), 1-5. https://doi.org/10.31181/rme200102001q.
  58. Qin, B., Zhong, R., Wang, T., Wang, Q., Xu, Y. and Hu, Z. (2020), "A unified Fourier series solution for vibration analysis of FG-CNTRC cylindrical, conical shells and annular plates with arbitrary boundary conditions", Compos. Struct., 232, 111549. https://doi.org/10.1016/j.compstruct.2019.111549.
  59. Rossit, C.A., Bambill, D.V. and Gilardi, G.J. (2017), "Free vibrations of AFG cantilever tapered beams carrying attached masses", Struct. Eng. Mech., 61(5), 685-691. https://doi.org/10.12989/sem.2017.61.5.685.
  60. Sedighi, H.M. (2020), "Divergence and flutter instability of magneto‑thermo‑elastic C‑BN hetero‑nanotubes conveying fluid", Acta Mechanica Sinica, 36, 381-396. https://doi.org/10.1007/s10409-019-00924-4.
  61. Sedighi, H.M. and Malikan, M. (2020), "Stress-driven nonlocal elasticity for nonlinear vibration characteristics of carbon/boron-nitride hetero-nanotube subject to magnetothermal environment", Phys. Script., 95, 055218. https://doi.org/10.1088/1402-4896/ab7a38.
  62. Sedighi, H.M., Ouakad, H.M., Dimitri, R. and Tornabene, F. (2020), "Stress-driven nonlocal elasticity for the instability analysis of fluid-conveying C-BN hybrid-nanotube in a magneto-thermal environment", Phys. Scrip., 95, 065204. https://doi.org/10.1088/1402-4896/ab793f.
  63. Semnani, A.M.D., Dehdashti, E., Yazdi, M.R.H. and Bahrami, M.N. (2019), "Nonlinear thermo-resonant behavior of fluid-conveying FG pipes", Int. J. Eng. Sci., 144, 103141. https://doi.org/10.1016/j.ijengsci.2019.103141.
  64. Shen, J.P., Wang P.Y., Li, C. and Wang, Y.Y. (2019), "New observations on transverse dynamics of microtubules based on nonlocal strain gradient theory", Compos. Struct., 225, 111036. https://doi.org/10.1016/j.compstruct.2019.111036.
  65. Simsek, M. (2016), "Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradient theory and a novel Hamiltonian approach", Int. J. Eng. Sci., 105, 12-27. https://doi.org/10.1016/j.ijengsci.2016.04.013.
  66. Stephan, O., Ajayan, P.M., Colliex, C., Redlich, P., Lambert, J.M., Bernier, P. and Lefin, P. (1994), "Doping graphitic and carbon nanotube structures with boron and nitrogen", Sci., 266, 1683-1685. https://doi.org/10.1126/science.266.5191.1683.
  67. Tahami, F.V., Biglari, H. and Raminnea, M. (2017), "Moving load induced dynamic response of functionally graded-carbon nanotubes-reinforced pipes conveying fluid subjected to thermal load", Struct. Eng. Mech., 64(4), 515-526. http://doi.org/10.12989/sem.2017.64.4.515
  68. Tang, Y. and Yang, T. (2018), "Bi-directional functionally graded nanotubes: Fluid conveying dynamics", Int. J. Appl. Mech., 10(4), 1850041. https://doi.org/10.1142/S1758825118500412.
  69. Thai, H.T. and Vo, T.P. (2012), "Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories", Int. J. Mech. Sci., 62, 57-66. https://doi.org/10.1016/j.ijmecsci.2012.05.014.
  70. Thostenson, E.T., Ren, Z. and Chou, T.W. (2001), "Advances in the science and technology of carbon nanotubes and their composites: a review", Compos. Sci. Tech., 61, 1899-1912. https://doi.org/10.1016/S0266-3538(01)00094-X.
  71. Trinh, L.C., Nguyen, H.X., Vo, T.P. and Nguyen, T.K. (2016), "Size-dependent behaviour of functionally graded microbeams using various shear deformation theories based on the modified couple stress theory", Compos. Struct., 154, 556-572. https://doi.org/10.1016/j.compstruct.2016.07.033.
  72. Wang, B., Deng, Z., Ouyang, H. and Xu, X. (2015), "Free vibration of wavy single-walled fluid-conveying carbon nanotubes under multi-physics fields", App. Math. Model., 39(22), 6780-6792. https://doi.org/10.1016/j.apm.2015.02.033.
  73. Wang, C.M., Tan, V.B.C. and Zhang, Y.Y. (2006), "Timoshenko beam model for vibration analysis of multi-walled carbon nanotubes", J. Sound Vib., 294, 1060-1072. https://doi.org/10.1016/j.jsv.2006.01.005.
  74. Wu, H., Zhu, J., Kitipornchai, S., Wang, Q., Ke, L.L. and Yang, J. (2020), "Large amplitude vibration of functionally graded graphene nanocomposite annular plates in thermal environments", Compos. Struct., 239, 112047. https://doi.org/10.1016/j.compstruct.2020.112047.
  75. Xiao, W.S. and Dai, P. (2020), "Static analysis of a circular nanotube made of functionally graded bi-semi-tubes using nonlocal strain gradient theory and a refined shear model", Eur. J. Mech.-A/Solid., 82, 103979. https://doi.org/10.1016/j.euromechsol.2020.103979.
  76. Xie, K., Wang, Y., Niu, H. and Chen, H. (2020), "Large-amplitude nonlinear free vibrations of functionally graded plates with porous imperfection: A novel approach based on energy balance method", Compos. Struct., 246, 112367. https://doi.org/10.1016/j.compstruct.2020.112367.
  77. Yang, F.A.C.M., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solid. Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X.
  78. Yoon, J., Ru, C.Q. and Mioduchowski, A. (2005), "Vibration and instability of carbon nanotubes conveying fluid", Compos. Sci. Tech., 65, 1326-1336. https://doi.org/10.1016/j.compscitech.2004.12.002.
  79. Zarga, D., Tounsi, A., Bousahla, A.A., Bourada, F. and Mahmoud, S. (2019), "Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory", Steel Compos. Struct., 32(3), 389-410. https://doi.org/10.12989/scs.2019.32.3.389.
  80. Zeighampour, H. and Beni, Y.T. (2014), "Size-dependent vibration of fluid-conveying double-walled carbon nanotubes using couple stress shell theory", Physica E: Low Dimens. Syst. Nanostruct., 61, 28-39. https://doi.org/10.1016/j.physe.2014.03.011.
  81. Zeighampour, H., Beni, Y.T. and Dehkordi, M.B. (2018), "Wave propagation in viscoelastic thin cylindrical nanoshell resting on a visco-Pasternak foundation based on nonlocal strain gradient theory", Thin Wall. Struct., 122, 378-386. https://doi.org/10.1016/j.tws.2017.10.037.
  82. Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693.
  83. Zhang, J. and Wang, C.Y. (2017), "Beat vibration of hybrid boron nitridecarbon nanotubes-a new avenue to atomic-scale mass sensing", Comput. Mater. Sci., 127, 270-276. https://doi.org/10.1016/j.commatsci.2016.11.014.