References
- Abdelaziz, H.H., Meziane, M.A.A, Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2017), "An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions", Steel Compos. Struct., 25(6), 693-704. http://dx.doi.org/10.12989/scs.2017.25.6.693.
- Ahmadi, H. and Foroutan, K. (2019), "Nonlinear vibration of stiffened multilayer FG cylindrical shells with spiral stiffeners rested on damping and elastic foundation in thermal environment", Thin Wall. Struct., 145, 106388. https://doi.org/10.1016/j.tws.2019.106388.
- Aifantis, E.C. (1992), "On the role of gradients in the localization of deformation and fracture", Int. J. Eng. Sci., 30(10), 1279-1299. https://doi.org/10.1016/0020-7225(92)90141-3.
- Akgoz, B. and Civalek, O. (2013), "Buckling analysis of functionally graded microbeams based on the strain gradient theory", Acta Mechanica, 224, 2185-2201. https://doi.org/10.1007/s00707-013-0883-5.
- Akgoz, B. and Civalek, O. (2014), "Longitudinal vibration analysis for microbars based on strain gradient elasticity theory", J. Vib. Control, 20, 606-616. https://doi.org/10.1177/1077546312463752.
- Akgoz, B. and Civalek, O. (2015), "A microstructure-dependent sinusoidal plate model based on the strain gradient elasticity theory", Acta Mechanica, 226(7), 2277-2294. https://doi.org/10.1007/s00707-015-1308-4.
- Akgoz, B. and Civalek, O. (2016). "Bending analysis of embedded carbon nanotubes resting on an elastic foundation using strain gradient theory", Acta Astronautica, 119, 1-12. https://doi.org/10.1016/j.actaastro.2015.10.021.
- Akgoz, B. and Civalek. O. (2017), "A size-dependent beam model for stability of axially loaded carbon nanotubes surrounded by Pasternak elastic foundation", Compos. Struct., 176, 1028-1038. https://doi.org/10.1016/j.compstruct.2017.06.039.
- Amiri, A., Pournaki, I.J., Jafarzadeh, E., Shabani, R. and Rezazadeh, G. (2016), "Vibration and instability of fluid‑conveyed smart micro‑tubes based on magneto‑electro‑elasticity beam model", Microfluid Nanofluid, 20, 38. https://doi.org/10.1007/s10404-016-1706-5.
- Ansari, R., Norouzzadeh, A., Gholami, R., Shojaei M.F. and Hosseinzadeh, M. (2014), "Size-dependent nonlinear vibration and instbility of embedded fluid-conveying SWBNNTs in thermal environment", Physica E, 61, 148-157. https://doi.org/10.1016/j.physe.2014.04.004.
- Apuzzo, A., Barretta, R., Canadija, M., Feo, L., Luciano, R. and Sciarra, F.M. (2017), "A closed-form model for torsion of nanobeams with an enhanced nonlocal formulation", Compos. Part B: Eng., 108, 315-324. https://doi.org/10.1016/j.compositesb.2016.09.012.
- Bahaadini, R., Hosseini, M. and Jamali, B. (2018a), "Flutter and divergence instability of supported piezoelectric nanotubes conveying fluid", Physica B: Condens. Matter., 529, 57-65. https://doi.org/10.1016/j.physb.2017.09.130.
- Bahaadini, R., Saidi, A.R. and Hosseini, M. (2018b), "Dynamic stability of fluid-conveying thin-walled rotating pipes reinforced with functionally graded carbon nanotubes", Acta Mech., 229, 5013-5029. https://doi.org/10.1007/s00707-018-2286-0.
- Bakhadda, B., Bouiadjra, M.B., Bourada, F., Bousahla, A.A., Tounsi, A. and Mahmoud, S. (2018), "Dynamic and bending analysis of carbon nanotube-reinforced composite plates with elastic foundation", Wind Struct., 27(5), 311-324. https://doi.org/10.12989/was.2018.27.5.311.
- Barati, M.R. (2017), "Vibration analysis of FG nanoplates with nanovoids on viscoelastic substrate under hygro thermomechanical loading using nonlocal strain gradient theory", Struct. Eng. Mech., 64, 683-693. https://doi.org/10.12989/sem.2017.64.6.683.
- Barretta, R. and Sciarra, F.M. (2018), "Constitutive boundary conditions for nonlocal strain gradient elastic nano-beams", Int. J. Eng. Sci., 130, 187-198. https://doi.org/10.1016/j.ijengsci.2018.05.009.
- Bellifa, H., Benrahou, K.H., Bousahla, A.A., Tounsi, A. and Mahmoud, S. (2017), "A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams", Struct. Eng. Mech., 62(6), 695-702. https://doi.org/10.12989/sem.2017.62.6.695.
- Berghouti, H., Adda Bedia, E., Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., 7(5), 351-364. http://dx.doi.org/10.12989/anr.2019.7.5.351.
- Bouadi, A., Bousahla, A.A., Houari, M.S.A., Heireche, H. and Tounsi, A. (2018), "A new nonlocal HSDT for analysis of stability of single layer graphene sheet", Adv. Nano Res., 6(2), 147-162. https://doi.org/10.12989/anr.2018.6.2.147.
- Cheng, Q., Liu, Y., Wang, G., Liu, H., Jin, M. and Li, R. (2019), "Free vibration of a fluid-conveying nanotube constructed by carbon nanotube and boron nitride nanotube", Physica E, 109, 183-190. https://doi.org/10.1016/j.physe.2018.08.026.
- Civalek, O. (2017), "Free vibration of carbon nanotubes reinforced (CNTR) and functionally graded shells and plates based on FSDT via discrete singular convolution method", Compos. B: Eng., 111, 45-59. https://doi.org/10.1016/j.compositesb.2016.11.030.
- Civalek, O., Dastjerdi, S., Akbas, S.D. and Akgoz, B. (2020), "Vibration analysis of carbon nanotube-reinforced composite microbeams", Math. Meth. Appl. Sci., https://doi.org/10.1002/mma.7069.
- Civalek, O., Uzun, B., Yayli, M.O. and Akgoz, B. (2020), "Size-dependent transverse and longitudinal vibrations of embedded carbon and silica carbide nanotubes by nonlocal finite element method". Eur. Phys. J. Plus, 135, 381. https://doi.org/10.1140/epjp/s13360-020-00385-w.
- Dai, H.L., Wang, L., Abdelkefi, A. and Ni, Q. (2015), "On nonlinear behavior and buckling of fluid-transporting nanotubes", Int. J. Eng. Sci., 87, 13-22. https://doi.org/10.1016/j.ijengsci.2014.11.005.
- Dastjerdi, S., Akgoz, B. and Civalek, O. (2020), "On the effect of viscoelasticity on behavior of gyroscopes", Int. J. Eng. Sci., 149, 103236. https://doi.org/10.1016/j.ijengsci.2020.103236.
- Ebrahimi, F. and Barati, M.R. (2017), "Vibration analysis of embedded size dependent FG nanobeams based on third-order shear deformation beam theory", Struct. Eng. Mech., 61(6), 721-736. http://dx.doi.org/10.12989/sem.2017.61.6.721.
- Ebrahimi, F. and Barati, M.R. (2018), "Wave propagation analysis of smart strain gradient piezo-magneto-elastic nonlocal beams", Struct. Eng. Mech., 66, 237-248. http://dx.doi.org/10.12989/sem.2018.66.2.237.
- Ebrahimi, F., Barati, M.R. and Civalek, O. (2020), "Application of Chebyshev-Ritz method for static stability and vibration analysis of nonlocal microstructure-dependent nanostructures", Eng. Comput., 36, 953-964. https://doi.org/10.1007/s00366-019-00742-z.
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54, 4703-4710. https://doi.org/10.1063/1.332803.
- Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10, 233-248. https://doi.org/10.1016/0020-7225(72)90039-0.
- Gao, Y., Xiao, W.S. and Zhu, H. (2019), "Nonlinear vibration of functionally graded nano-tubes using nonlocal strain gradient theory and a two-steps perturbation method", Struct. Eng. Mech., 69(2), 205-219. https://doi.org/10.12989/sem.2019.69.2.205.
- Gibson, R.F., Ayorinde, E.O. and Wen, Y.F. (2007), "Vibrations of carbon nanotubes and their composites: A review", Compos. Sci. Tech., 67, 1-28. https://doi.org/10.1016/j.compscitech.2006.03.031.
- He, C.H., Liu, C., He, J.H., Shirazi, A.H., Mohammad-Sedighi, H., (2021), "Passive atmospheric water harvesting utilizing an ancient chinese ink slab", Facta Univ., Ser.: Mech. Eng., https://doi.org/10.22190/FUME201203001H.
- He, J.H. (2002), "Preliminary report on the energy balance for nonlinear oscillations", Mech. Res. Commun., 29, 107-111. https://doi.org/10.1016/S0093-6413(02)00237-9.
- He, J.H. (2010), "Hamiltonian approach to nonlinear oscillators", Phys. Lett. A, 374(23), 2312-2314. https://doi.org/10.1016/j.physleta.2010.03.064.
- He, J.H., Hou, W.F., Qie, N., Gepreel, K.A., Shirazi, A.H. and Mohammad-Sedighi, H. (2021), "Hamiltonian-based frequency-amplitude formulation for nonlinear oscillators", Facta Univ., Ser.: Mech. Eng., https://doi.org/10.22190/FUME201205002H.
- Jalaei, M. and Civalek, O. (2019), "On dynamic instability of magnetically embedded viscoelastic porous FG nanobeam", Int. J. Eng. Sci., 143, 14-32. https://doi.org/10.1016/j.ijengsci.2019.06.013.
- Kaghazian, A., Hajnayeb, A. and Foruzande, H. (2017), "Free vibration analysis of a piezoelectric nanobeam using nonlocal elasticity theory", Struct. Eng. Mech., 61(5), 617-624. https://doi.org/10.12989/sem.2017.61.5.617.
- Karami, B., Janghorban, M., Shahsavari, D. and Tounsi, A. (2018), "A size-dependent quasi-3D model for wave dispersion analysis of FG nanoplates", Steel Compos. Struct., 28(1), 99-110. https://doi.org/10.12989/sem.2019.69.5.487.
- Kim, J., Zur, K.K. and Reddy, J.N. (2019), "Bending, free vibration, and buckling of modified couples stress-based functionally graded porous micro-plates", Compos. Struct., 209, 879-888. https://doi.org/10.1016/j.compstruct.2018.11.023.
- Koizumi, M. (1997), "FGM activities in Japan", Composites Part B: Engineering, 28(1-2), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9.
- Lam, D.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003). "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solid., 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X.
- Li, L, and Hu, Y. (2017), "Post-buckling analysis of functionally graded nanobeams incorporating nonlocal stress and microstructure-dependent strain gradient effects", Int. J. Mech. Sci., 120, 159-170. https://doi.org/10.1016/j.ijmecsci.2016.11.025.
- Li, L., Hu, Y., Li, X. and Ling, L. (2016), "Size-dependent effects on critical flow velocity of fluid-conveying microtubes via nonlocal strain gradient theory", Microfluid Nanofluid, 20, 76. https://doi.org/10.1007/s10404-016-1739-9.
- Liang, F., Gao, A. and Yang, X.D. (2020), "Dynamical analysis of spinning functionally graded pipes conveying fluid with multiple spans", Appl. Math. Model., 83, 454-469. https://doi.org/10.1016/j.apm.2020.03.011.
- Lim, C.W., Zhang, G. and Reddy, J.N. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solid., 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001.
- Lotfan, S., Fathi, R. and Ettefagh, M.M. (2016), "Size-dependent nonlinear vibration analysis of carbon nanotubes conveying multiphase flow", Int. J. Mech. Sci., 115-116, 723-735. https://doi.org/10.1016/j.ijmecsci.2016.07.034.
- Mahmood, A.A., Mirdamadi, H.R. and Ghayour, M. (2013), "Coupled effects of nano-size, stretching, and slip boundary conditions on nonlinear vibrations of nano-tube conveying fluid by homotopy analysis method", Physica E: Low Dimen. Syst. Nanostruct., 52, 77-85. https://doi.org/10.1016/j.physe.2013.03.031.
- Mahmoudpour, E., Hashemi, Sh.H. and Faghidian, S.A. (2018), "A nonlocal strain gradient theory for nonlinear free and forced vibration of embedded thick FG double layered nanoplates", Struct. Eng. Mech., 68, 103-119. https://doi.org/10.12989/sem.2018.68.1.103.
- Mercan, K. and Civalek, O. (2016), "DSC method for buckling analysis of boron nitride nanotube (BNNT) surrounded by an elastic matrix", Compos. Struct., 143, 300-309. https://doi.org/10.1016/j.compstruct.2016.02.040.
- Nejad, M.Z., Hadi, A. and Farajpour, A. (2017), "Consistent couple-stress theory for free vibration analysis of Euler-Bernoulli nano-beams made of arbitrary bi-directional functionally graded materials", Struct. Eng. Mech., 63(2), 161-169. http://dx.doi.org/10.12989/sem.2017.63.2.161.
- Nematollahi, M.A., Jamali, B. and Hosseini, M. (2020), "Fluid velocity and mass ratio identification of piezoelectric nanotube conveying fluid using inverse analysis", Acta Mech., 231, 683-700. https://doi.org/10.1007/s00707-019-02554-0.
- Nikkar, A., Rouhi, S. and Ansari, R. (2017), "Finite element modeling of the vibrational behavior of multi-walled nested silicon-carbide and carbon nanotubes", Struct. Eng. Mech., 64(3), 329-337. http://dx.doi.org/10.12989/sem.2017.64.3.239.
- Ouakad, H.M. and Sedighi, H.M. (2016), "Rippling effect on the structural response of electrostatically actuated single-walled carbon nanotube based NEMS actuators", Int. J. Nonlin. Mech., 87, 97-108. https://doi.org/10.1016/j.ijnonlinmec.2016.09.009.
- Ouakad, H.M., Valipour, A., Zur, K.K., Sedighi, H.M. and Reddy, J.N. (2020), "On the nonlinear vibration and static deflection problems of actuated hybrid nanotubes based on the stress-driven nonlocal integral elasticity", Mech. Mater., 148, 103532. https://doi.org/10.1088/1402-4896/ab793f.
- Parsa, A. and Mahmoudpour, E. (2019), "Nonlinear free vibration analysis of embedded flexoelectric curved nanobeams conveying fluid and submerged in fluid via nonlocal strain gradient elasticity theory", Microsyst. Technol., 25, 4323-4339. https://doi.org/10.1007/s00542-019-04408-0.
- Qie, N., Houa, W.F. and He, J.H. (2021), "The fastest insight into the large amplitude vibration of a string", Rep. Mech. Eng., 2(1), 1-5. https://doi.org/10.31181/rme200102001q.
- Qin, B., Zhong, R., Wang, T., Wang, Q., Xu, Y. and Hu, Z. (2020), "A unified Fourier series solution for vibration analysis of FG-CNTRC cylindrical, conical shells and annular plates with arbitrary boundary conditions", Compos. Struct., 232, 111549. https://doi.org/10.1016/j.compstruct.2019.111549.
- Rossit, C.A., Bambill, D.V. and Gilardi, G.J. (2017), "Free vibrations of AFG cantilever tapered beams carrying attached masses", Struct. Eng. Mech., 61(5), 685-691. https://doi.org/10.12989/sem.2017.61.5.685.
- Sedighi, H.M. (2020), "Divergence and flutter instability of magneto‑thermo‑elastic C‑BN hetero‑nanotubes conveying fluid", Acta Mechanica Sinica, 36, 381-396. https://doi.org/10.1007/s10409-019-00924-4.
- Sedighi, H.M. and Malikan, M. (2020), "Stress-driven nonlocal elasticity for nonlinear vibration characteristics of carbon/boron-nitride hetero-nanotube subject to magnetothermal environment", Phys. Script., 95, 055218. https://doi.org/10.1088/1402-4896/ab7a38.
- Sedighi, H.M., Ouakad, H.M., Dimitri, R. and Tornabene, F. (2020), "Stress-driven nonlocal elasticity for the instability analysis of fluid-conveying C-BN hybrid-nanotube in a magneto-thermal environment", Phys. Scrip., 95, 065204. https://doi.org/10.1088/1402-4896/ab793f.
- Semnani, A.M.D., Dehdashti, E., Yazdi, M.R.H. and Bahrami, M.N. (2019), "Nonlinear thermo-resonant behavior of fluid-conveying FG pipes", Int. J. Eng. Sci., 144, 103141. https://doi.org/10.1016/j.ijengsci.2019.103141.
- Shen, J.P., Wang P.Y., Li, C. and Wang, Y.Y. (2019), "New observations on transverse dynamics of microtubules based on nonlocal strain gradient theory", Compos. Struct., 225, 111036. https://doi.org/10.1016/j.compstruct.2019.111036.
- Simsek, M. (2016), "Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradient theory and a novel Hamiltonian approach", Int. J. Eng. Sci., 105, 12-27. https://doi.org/10.1016/j.ijengsci.2016.04.013.
- Stephan, O., Ajayan, P.M., Colliex, C., Redlich, P., Lambert, J.M., Bernier, P. and Lefin, P. (1994), "Doping graphitic and carbon nanotube structures with boron and nitrogen", Sci., 266, 1683-1685. https://doi.org/10.1126/science.266.5191.1683.
- Tahami, F.V., Biglari, H. and Raminnea, M. (2017), "Moving load induced dynamic response of functionally graded-carbon nanotubes-reinforced pipes conveying fluid subjected to thermal load", Struct. Eng. Mech., 64(4), 515-526. http://doi.org/10.12989/sem.2017.64.4.515
- Tang, Y. and Yang, T. (2018), "Bi-directional functionally graded nanotubes: Fluid conveying dynamics", Int. J. Appl. Mech., 10(4), 1850041. https://doi.org/10.1142/S1758825118500412.
- Thai, H.T. and Vo, T.P. (2012), "Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories", Int. J. Mech. Sci., 62, 57-66. https://doi.org/10.1016/j.ijmecsci.2012.05.014.
- Thostenson, E.T., Ren, Z. and Chou, T.W. (2001), "Advances in the science and technology of carbon nanotubes and their composites: a review", Compos. Sci. Tech., 61, 1899-1912. https://doi.org/10.1016/S0266-3538(01)00094-X.
- Trinh, L.C., Nguyen, H.X., Vo, T.P. and Nguyen, T.K. (2016), "Size-dependent behaviour of functionally graded microbeams using various shear deformation theories based on the modified couple stress theory", Compos. Struct., 154, 556-572. https://doi.org/10.1016/j.compstruct.2016.07.033.
- Wang, B., Deng, Z., Ouyang, H. and Xu, X. (2015), "Free vibration of wavy single-walled fluid-conveying carbon nanotubes under multi-physics fields", App. Math. Model., 39(22), 6780-6792. https://doi.org/10.1016/j.apm.2015.02.033.
- Wang, C.M., Tan, V.B.C. and Zhang, Y.Y. (2006), "Timoshenko beam model for vibration analysis of multi-walled carbon nanotubes", J. Sound Vib., 294, 1060-1072. https://doi.org/10.1016/j.jsv.2006.01.005.
- Wu, H., Zhu, J., Kitipornchai, S., Wang, Q., Ke, L.L. and Yang, J. (2020), "Large amplitude vibration of functionally graded graphene nanocomposite annular plates in thermal environments", Compos. Struct., 239, 112047. https://doi.org/10.1016/j.compstruct.2020.112047.
- Xiao, W.S. and Dai, P. (2020), "Static analysis of a circular nanotube made of functionally graded bi-semi-tubes using nonlocal strain gradient theory and a refined shear model", Eur. J. Mech.-A/Solid., 82, 103979. https://doi.org/10.1016/j.euromechsol.2020.103979.
- Xie, K., Wang, Y., Niu, H. and Chen, H. (2020), "Large-amplitude nonlinear free vibrations of functionally graded plates with porous imperfection: A novel approach based on energy balance method", Compos. Struct., 246, 112367. https://doi.org/10.1016/j.compstruct.2020.112367.
- Yang, F.A.C.M., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solid. Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X.
- Yoon, J., Ru, C.Q. and Mioduchowski, A. (2005), "Vibration and instability of carbon nanotubes conveying fluid", Compos. Sci. Tech., 65, 1326-1336. https://doi.org/10.1016/j.compscitech.2004.12.002.
- Zarga, D., Tounsi, A., Bousahla, A.A., Bourada, F. and Mahmoud, S. (2019), "Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory", Steel Compos. Struct., 32(3), 389-410. https://doi.org/10.12989/scs.2019.32.3.389.
- Zeighampour, H. and Beni, Y.T. (2014), "Size-dependent vibration of fluid-conveying double-walled carbon nanotubes using couple stress shell theory", Physica E: Low Dimens. Syst. Nanostruct., 61, 28-39. https://doi.org/10.1016/j.physe.2014.03.011.
- Zeighampour, H., Beni, Y.T. and Dehkordi, M.B. (2018), "Wave propagation in viscoelastic thin cylindrical nanoshell resting on a visco-Pasternak foundation based on nonlocal strain gradient theory", Thin Wall. Struct., 122, 378-386. https://doi.org/10.1016/j.tws.2017.10.037.
- Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693.
- Zhang, J. and Wang, C.Y. (2017), "Beat vibration of hybrid boron nitridecarbon nanotubes-a new avenue to atomic-scale mass sensing", Comput. Mater. Sci., 127, 270-276. https://doi.org/10.1016/j.commatsci.2016.11.014.