DOI QR코드

DOI QR Code

The fire-risks of cost-optimized steel structures: Fire-resistant and hot-rolled carbon steel

  • Garcia, Harkaitz (Department of Mechanical Engineering, University of the Basque Country (UPV/EHU)) ;
  • Cuadrado, Jesus (Department of Mechanical Engineering, University of the Basque Country (UPV/EHU)) ;
  • Biezma, Maria V. (Department of Earth and Materials Science and Engineering, University of Cantabria) ;
  • Calderon, Inigo (Sustainable Construction Division, Tecnalia Research and Innovation)
  • Received : 2019.09.24
  • Accepted : 2021.02.04
  • Published : 2021.04.10

Abstract

This work studies the behaviour of a steel portal frame selection under fire exposure, considering both span lengths and fire exposure times as variables. Such structures combine carbon steel (S275), fireproof micro-alloyed steel (FR), and coatings of intumescent paint with variable thicknesses, improving thereby the flame retardant behaviour of the steel structure. Thus, the main contribution of this study is the optimization of the portal frames by combining both steels, analysing the resulting costs influence on the final dimensions. Besides, the topological optimization of each steel component within the structure is also defined, in accordance with the following variables: weather conditions, span, paint thickness, and cost of steel. The results mainly confirmed that using both FR and S275 grades with intumescent painting is the Pareto optimum when considering performance, feasibility and costs of such portal frames widely used for industrial facilities.

Keywords

References

  1. AFITI (2017), The Spanish Association for the Promotion of Research and Fire Safety Technology, Spain.
  2. Chen, L. and Wang, Y. (2012), "Methods of improving survivability of steel beam/column connections in fire", J. Constr. Steel Res., 79, 127-139. https://doi.org/10.1016/j.jcsr.2012.07.025.
  3. Chung, H.Y., Lee, C.H., Su, W.J. and Lin, R.Z. (2010), "Application of fire-resistant steel to beam-to-column moment connections at elevated temperatures", J. Constr. Steel Res., 66(2), 289-303. https://doi.org/10.1016/j.jcsr.2009.09.009.
  4. Ding, J., Li, G.Q. and Sakumoto, Y. (2004), "Parametric studies on fire resistance of fire-resistant steel members", J. Constr. Steel Res., 60(7), 1007-1027. https://doi.org/10.1016/j.jcsr.2003.09.007.
  5. EN 10025 (2004), Hot Rolled Products of Structural Steels, Spain.
  6. EN 1993-1-1 (2005), Eurocode 3: Design of Steel Structures-Part 1-1 General Rules and Rules for Buildings, Spain.
  7. FR-30 (2017), Thyssen Krupp, China. http://www.lookpolymers.com/polymer_ThyssenKrupp-FR-30-Fire-Resistant-Steel.php.
  8. Franssen, J.M. and Gernay, T. (2017), "Modeling structures in fire with SAFIR®: Theoretical background and capabilities", J. Struct. Fire Eng., 8(3), 300-323. https://doi.org/10.1108/JSFE-07-2016-0010.
  9. Garcia, H. (2013), "Comportamiento frente al fuego de prticos metlicos empleando distintos tipos de acero con recubrimiento intumescente (Fire response of portal frames incorporating different types of steel with intumescent coatings)", Ph.D. Thesis, University of Basque Country, Spain.
  10. Garcia, H., Biezma, M., Cuadrado, J. and Maturana, A. (2016a), "Fire-resistance industrial portal frames: design with different mechanical properties steels and 35 meters spans", Mater. Struct., 49(1-2), 341-352. https://doi.org/10.1617/s11527-014-0501-6
  11. Garcia, H., Biezma, M., Cuadrado, J. and Orbe, A. (2013), "Study of historical developments in the use of fire resistant steels", Mater. High Temperat., 30(4), 313-319. https://doi.org/10.3184/096034013X13809016785943.
  12. Garcia, H., Biezma, M., Cuadrado, J. and Zubizarreta, M. (2016b), "Dual-steel portal frame design to withstand a fire exposure of 45 minutes", Int. J. Steel Struct., 16(3), 705-717. https://doi.org/10.1007/s13296-015-0139-4.
  13. Kanno, R., Tsujii, M., Hanya, K., Matsuoka, K., Tominaga, T. and Ozaki, F. (2012), "Steels, steel products and steel structures sustaining growth of society (infrastructure field)", Nippon Steel Technical Report, 101, 57-67.
  14. Kelly, F. and Sha, W. (1999), "A comparison of the mechanical properties of fire-resistant and S275 structural steels", J. Constr. Steel Res., 50(3), 223-233. https://doi.org/10.1016/S0143-974X(98)00252-1.
  15. Kirby, B., Newman, G., Butterworth, N., Pagan, J. and English, C. (2004), "A new approach to specifying fire resistance periods", Struct. Eng., 82(19).
  16. Kolsek, J. and Cesarek, P. (2015), "Performance-based fire modelling of intumescent painted steel structures and comparison to EC3", J. Constr. Steel Res., 104, 91-103. https://doi.org/10.1016/j.jcsr.2014.10.008.
  17. Kwon, I.K. and Kwon, Y.B. (2014), "Structural stability of fire-resistant steel (FR490) H-section columns at elevated temperatures", Steel Compos. Struct., 17(1), 105-121. https://doi.org/10.12989/scs.2014.17.1.105.
  18. Liew, J.R. and Chen, H. (2004), "Explosion and fire analysis of steel frames using fiber element approach", J. Struct. Eng., 130(7), 991-1000. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:7(991).
  19. Mesquita, L., Piloto, P. and Vaz, M. (2007), "An experimental study of intumescent fire protection coatings", Proceedings of the International Advanced Research Workshop in Fire Computer Modeling.
  20. Mesquita, L., Piloto, P., Vaz, M. and Pinto, T. (2009), "Decomposition of intumescent coatings: comparison between a numerical method and experimental results", Acta Polytechnica, 49(1), 60-65.
  21. Muratov, A., Morozov, Y.D., Chevskaya, O. and Filippov, G. (2007), "Technology for the commercial production of fire-resistant steel for building structures", Metallurgist, 51(7), 446-453. https://doi.org/10.1007/s11015-007-0079-0.
  22. Panigrahi, B.K. (2006), "Microstructures and properties of low-alloy fire resistant steel", Bull. Mater. Sci., 29(1), 59-66. https://doi.org/10.1007/BF02709357.
  23. Platts (2020), New York. https://www.steelbb.com/es/?PageID=1.
  24. UNE-EN-1993-1-2:2011 (2011), Eurocode 3: Design of Steel Structures-Part 1-2: General Rules-Structural Fire Design, Spain.
  25. UNE-EN1363-1:2000 (2017), Fire Resistance Tests. Part 1: General Requirements, Spain.
  26. Wan, R., Sun, F., Zhang, L. and Shan, A. (2012), "Development and study of high-strength low-Mo fire-resistant steel", Mater. Des. (1980-2015), 36, 227-232. https://doi.org/10.1016/j.matdes.2011.10.055.
  27. Wan, R.C., Sun, F., Zhang, L.T., Wen, D.H., Hu, X.P. and Shan, A.D. (2013), "Effect of Mo on the high-temperature yield strength of fire-resistant steels", J. Univ. Sci. Technol. Beijing, 35(3), 325-331. https://doi.org/10.1016/j.matdes.2011.09.009.
  28. Yang, K.C. and Yu, Z.H. (2013), "Experimental research on the creep buckling of fire-resistant steel columns at elevated temperature", Steel Compos. Struct., 15(2), 163-173. http://dx.doi.org/10.12989/scs.2013.15.2.163.
  29. Zhang, Y., Wang, Y., Bailey, C. and Taylor, A. (2012), "Global modelling of fire protection performance of intumescent coating under different cone calorimeter heating conditions", Fire Saf. J., 50, 51-62. https://doi.org/10.1016/j.firesaf.2012.02.004.