DOI QR코드

DOI QR Code

3D 프린팅 시멘트계 재료의 유변학적 물성과 요구 성능에 관한 문헌 조사

Literature Review on Rheological Properties and Required Performances of 3D Printable Cementitious Materials

  • 오상우 (중앙대학교 토목공학과) ;
  • 홍근태 (중앙대학교 토목공학과) ;
  • 최성철 (중앙대학교 건설환경플랜트공학과)
  • Oh, Sangwoo (Department of Civil Environmental Engineering, Chung-Ang University) ;
  • Hong, Geuntae (Department of Civil Environmental Engineering, Chung-Ang University) ;
  • Choi, Seongcheol (Department of Civil Environmental Engineering, Chung-Ang University)
  • 투고 : 2020.12.20
  • 심사 : 2021.02.01
  • 발행 : 2021.03.30

초록

3D 프린팅 시공기술은 주로 거푸집 없이 시멘트계 재료를 적층하여 생산하는 방식을 활용한다. 3D 프린팅 시멘트계 재료는 굳지 않은 상태에서 이송성, 토출성, 적층성 관련 성능이 요구되기 때문에 기존 시공방식에서 사용되던 재료 물성에 대한 추가적인 고려가 필요하다. 이 연구의 목적은 국내외의 3D 프린팅 시멘트계 재료의 유변학적 특성에 대한 기존 연구 사례들을 비교 분석하여 3D 프린팅 시멘트계 재료의 요구 성능과 유변학적 물성과의 연관성을 조사하는 것이다. 3D 프린팅 시멘트계 재료의 점성, 항복응력, 틱소트로피에 대한 실험을 진행했던 이전 연구 사례들의 장비, 실험 및 평가 방식, 사용한 혼화제 특징을 기준으로 분류하여 조사하였다. 본 연구에서는 3D 프린팅 재료의 요구 성능을 정성적으로 유변학적 물성과의 연관성을 나타내었다. 이 연구의 결과로부터 점성은 주로 이송성과 관련이 있고 시간에 따른 항복응력의 변화, 틱소트로피는 3D 프린팅 시멘트계 재료의 적층 성능과 밀접한 관련이 있음을 확인하였다.

3D printing techniques have been recently adopted in the construction industry. It mainly utilizes additive manufacturing which is the fabrication process depositing successive layers of materials without any formworks. Conventional cementitious materials may not be directly applicable to 3D printing because 3D printable cementitious materials is required to satisfy such characteristics as pumpability, extrudability, and buildability in a fresh state. This study aimed to investigate rheological properties and required performances of 3D printable cementitious materials, by reviewing existing studies. Test methods and equipments, evaluation results and characteristics of mixture additives were compared. Based on reviews of existing studies, this study indicates that the viscosity is mainly relevant to the pumpability of 3D printable materials whereas the yield stress and thixotropy are important in securing buildability of the materials.

키워드

참고문헌

  1. Banfill, P.F.G. (1990). Rheology of Fresh Cement and Concrete: Proceedings of an International Conference, Liverpool, 1990. CRC Press.
  2. Barnes, H.A. (2000). A Handbook of Elementary Rheology.
  3. Barnes, H.A., Hutton, J.F., Walters, K. (1989). An Introduction to Rheology, 3, Elsevier.
  4. Beaupre, D. (1994). Rheology of High Performance Shotcrete, Ph.d Thesis, University of British Columbia.
  5. Buswell, R.A., De Silva, W.L., Jones, S.Z., Dirrenberger, J. (2018). 3D printing using concrete extrusion: a roadmap for research, Cement and Concrete Research, 112, 37-49. https://doi.org/10.1016/j.cemconres.2018.05.006
  6. Chen, M., Yang, L., Zheng, Y., Huang, Y., Li, L., Zhao, P., Wang, S., Lu, L., Cheng, X. (2020). Yield stress and thixotropy control of 3D-printed calcium sulfoaluminate cement composites with metakaolin related to structural build-up, Construction and Building Materials, 252, 119090. https://doi.org/10.1016/j.conbuildmat.2020.119090
  7. Chidiac, S.E., Habibbeigi, F. (2005). Modelling the rheological behaviour of fresh concrete: an elasto-viscoplastic finite element approach, Computers and Concrete, 2(2), 97-110. https://doi.org/10.12989/cac.2005.2.2.097
  8. Cho, S., Kruger, P.J., Zeranka, S., van Zijl, G.P.A.G. (2018). 3D printalbe concrete technology and mechanics. In Proceedings of the 19th Annual International RAPDASA Conference, 7-9.
  9. Chua, C.K., Leong, K.F. (2014). 3D Printing and Additive Manufacturing: Principles and Applications(with Companion Media Pack) of Rapid Prototyping Fourth Edition, World Scientific Publishing Company.
  10. De Larrard, F., Ferraris, C.F., Sedran, T. (1998). Fresh concrete: a herschel-bulkley material, Materials and structures, 31(7), 494-498. https://doi.org/10.1007/BF02480474
  11. Dolz, M., Hernandez, M.J., Pellicer, J., Delegido, J. (1995). Shear stress synergism index and relative thixotropic area, Journal of pharmaceutical sciences, 84(6), 728-732. https://doi.org/10.1002/jps.2600840613
  12. Dressler, I., Freund, N., Lowke, D. (2020). The effect Of accelerator dosage on fresh concrete properties and on interlayer strength in shotcrete 3D printing, Materials, 13(2), 374. https://doi.org/10.3390/ma13020374
  13. Fares, G., Khan, M.I. (2019). Rheology and Its relation to strain-hardening properties of strain-hardening cement-based composites, ACI Materials Journal, 116(5). https://doi.org/10.14359/51716832
  14. Ferraris, C.F. (1999). Measurement of the rheological properties of high performance concrete: state of the art report, Journal of Research of the National Institute of Standards and Technology, 104(5), 461. https://doi.org/10.6028/jres.104.028
  15. Feys, D., Verhoeven, R., De Schutter, G. (2008). Fresh self compacting concrete, a shear thickening material, Cement and Concrete Research, 38(7), 920-929. https://doi.org/10.1016/j.cemconres.2008.02.008
  16. Feys, D., Verhoeven, R., De Schutter, G. (2009). Why is fresh self-compacting concrete shear thickening?, Cement and concrete Research, 39(6), 510-523. https://doi.org/10.1016/j.cemconres.2009.03.004
  17. Jo, J.H., Jo, B.W., Cho, W., Kim, J.H. (2020). Development of a 3D printer for concrete structures: laboratory testing of cementitious materials, International Journal of Concrete Structures and Materials, 14(1), 1-11. https://doi.org/10.1186/s40069-019-0376-6
  18. Jolin, M., Burns, D., Bissonnette, B., Gagnon, F., Bolduc, L.S. (2009). Understanding the Pumpability of Concrete.
  19. Kazemian, A., Yuan, X., Cochran, E., Khoshnevis, B. (2017). Cementitious materials for construction-scale 3D printing: laboratory testing of fresh printing mixture, Construction and Building Materials, 145, 639-647. https://doi.org/10.1016/j.conbuildmat.2017.04.015
  20. Khalil, N., Aouad, G., El Cheikh, K., Remond, S. (2017). Use of calcium sulfoaluminate cements for setting control of 3D-printing mortars, Construction and Building Materials, 157, 382-391. https://doi.org/10.1016/j.conbuildmat.2017.09.109
  21. Khayat, K.H., Saric-Coric, M., Liotta, F. (2002). Influence of thixotropy on stability characteristics of cement grout and concrete, Materials Journal, 99(3), 234-241.
  22. Koehler, E.P., Fowler, D.W. (2004). Development of a Portable Rheometer for Fresh Portland Cement Concrete.
  23. Kruger, J., Zeranka, S., van Zijl, G. (2019). 3D concrete printing: a lower bound analytical model for buildability performance quantification, Automation in Construction, 106, 102904. https://doi.org/10.1016/j.autcon.2019.102904
  24. Le, T.T., Austin, S.A., Lim, S., Buswell, R.A., Gibb, A.G., Thorpe, T. (2012). Mix design and fresh properties for high-performance printing concrete, Materials and Structures, 45(8), 1221-1232. https://doi.org/10.1617/s11527-012-9828-z
  25. Li, Z., Hojati, M., Wu, Z., Piasente, J., Ashrafi, N., Duarte, J.P., ... Radlinska, A. (2020). Fresh and hardened properties of extrusion-based 3D-printed cementitious materials: a review, Sustainability, 12(14), 5628. https://doi.org/10.3390/su12145628
  26. Lootens, D., Jousset, P., Martinie, L., Roussel, N., Flatt, R.J. (2009). Yield stress during setting of cement pastes from penetration tests, Cement and Concrete Research, 39(5), 401-408. https://doi.org/10.1016/j.cemconres.2009.01.012
  27. Ma, G., Li, Z., Wang, L. (2018). Printable properties of cementitious material containing copper tailings for extrusion based 3D printing, Construction and building materials, 162, 613-627. https://doi.org/10.1016/j.conbuildmat.2017.12.051
  28. Malaeb, Z., AlSakka, F., Hamzeh, F. (2019). 3D concrete printing: machine design, mix proportioning, and mix comparison between different machine setups, 3D Concrete Printing Technology, 115-136.
  29. Moller, P.C., Mewis, J., Bonn, D. (2006). Yield stress and thixotropy: on the difficulty of measuring yield stresses in practice, Soft Matter, 2(4), 274-283. https://doi.org/10.1039/b517840a
  30. Nair, S.A., Alghamdi, H., Arora, A., Mehdipour, I., Sant, G., Neithalath, N. (2019). Linking fresh paste microstructure, rheology and extrusion characteristics of cementitious binders for 3D printing, Journal of the American Ceramic Society, 102(7), 3951-3964. https://doi.org/10.1111/jace.16305
  31. Nerella, V.N., Mechtcherine, V. (2019). Studying the printability of fresh concrete for formwork-free concrete onsite 3D printing technology(CONPrint3D), 3D Concrete Printing Technology, 333-347.
  32. Panda, B., Noor Mohamed, N.A., Paul, S.C., Bhagath Singh, G.V.P., Tan, M.J.,Savija, B. (2019). The effect of material fresh properties and process parameters on buildability and interlayer adhesion of 3D printed concrete, Materials, 12(13), 2149. https://doi.org/10.3390/ma12132149
  33. Panda, B., Paul, S.C., Mohamed, N.A.N., Tay, Y.W.D., Tan, M.J. (2018). Measurement of tensile bond strength of 3D printed geopolymer mortar, Measurement, 113, 108-116. https://doi.org/10.1016/j.measurement.2017.08.051
  34. Panda, B., Unluer, C., Tan, M.J. (2018). Investigation of the rheology and strength of geopolymer mixtures for extrusion-based 3D printing, Cement and Concrete Composites, 94, 307-314. https://doi.org/10.1016/j.cemconcomp.2018.10.002
  35. Paul, S.C., Tay, Y.W.D., Panda, B., Tan, M.J. (2018). Fresh and hardened properties of 3D printable cementitious materials for building and construction, Archives of Civil and Mechanical Engineering, 18, 311-319. https://doi.org/10.1016/j.acme.2017.02.008
  36. Paul, S.C., van Zijl, G.P., Tan, M.J., Gibson, I. (2018). A review of 3D concrete printing systems and materials properties: current status and future research prospects, Rapid Prototyping Journal.
  37. Perrot, A., Rangeard, D., Pierre, A. (2016). Structural built-up of cement-based materials used for 3D-printing extrusion techniques, Materials and Structures, 49(4), 1213-1220. https://doi.org/10.1617/s11527-015-0571-0
  38. Roussel, N. (2006). A thixotropy model for fresh fluid concretes: theory, validation and applications, Cement and concrete research, 36(10), 1797-1806. https://doi.org/10.1016/j.cemconres.2006.05.025
  39. Roussel, N., Ovarlez, G., Garrault, S., Brumaud, C. (2012). The origins of thixotropy of fresh cement pastes. Cement and Concrete Research, 42(1), 148-157. https://doi.org/10.1016/j.cemconres.2011.09.004
  40. Rubio, M., Sonebi, M., Amziane, S. (2017). 3D printing of fibre cement-based materials: fresh and rheological performances, Academic Journal of Civil Engineering, 35(2), 480-488.
  41. Rushing, T.S., Stynoski, P.B., Barna, L.A., Al-Chaar, G.K., Burroughs, J.F., Shannon, J.D., ... Case, M.P. (2019). Investigation of concrete mixtures for additive construction, 3D Concrete Printing Technology, 137-160.
  42. Schwartzentruber, L.A., Le Roy, R., Cordin, J. (2006). Rheological behaviour of fresh cement pastes formulated from a self compacting concrete(SCC), Cement and Concrete Research, 36(7), 1203-1213. https://doi.org/10.1016/j.cemconres.2004.10.036
  43. Soltan, D.G., Li, V.C. (2018). A self-reinforced cementitious composite for building-scale 3D printing, Cement and Concrete Composites, 90, 1-13. https://doi.org/10.1016/j.cemconcomp.2018.03.017
  44. Standard, A.S.T.M. (2013). F2792-12a: standard terminology for additive manufacturing technologies (ASTM International, West Conshohocken, PA, 2012).
  45. P. Jain, AM Kuthe, Feasibility Study of Manufacturing Using Rapid Prototyping: FDM Approach, Procedia Eng, 63, 4-11. https://doi.org/10.1016/j.proeng.2013.08.275
  46. Tattersall, G.H. (1991). Workability and Quality Control of Concrete, CRC Press.
  47. Ukraincik, V. (1980). Study of fresh concrete flow curves, Cement and Concrete Research, 10(2), 203-212. https://doi.org/10.1016/0008-8846(80)90077-0
  48. Wangler, T., Lloret, E., Reiter, L., Hack, N., Gramazio, F., Kohler, M., ... Flatt, R. (2016). Digital concrete: opportunities and challenges. RILEM Technical Letters, 1, 67-75. https://doi.org/10.21809/rilemtechlett.2016.16
  49. Yim, H.J., Kim, J.H. (2014). Physical characterization of cementitious materials on casting and placing process, Materials, 7(4), 3049-3064. https://doi.org/10.3390/ma7043049
  50. Young, J.F., Mindess, S., Darwin, D. (2002). Concrete, Prentice Hall.
  51. Zareiyan, B., Khoshnevis, B. (2018). Effects of mixture ingredients on extrudability of concrete in Contour Crafting, Rapid Prototyping Journal.
  52. Zhang, Y., Zhang, Y., Liu, G., Yang, Y., Wu, M., Pang, B. (2018). Fresh properties of a novel 3D printing concrete ink, Construction and Building Materials, 174, 263-271. https://doi.org/10.1016/j.conbuildmat.2018.04.115
  53. Zhang, Y., Zhang, Y., She, W., Yang, L., Liu, G., Yang, Y. (2019). Rheological and harden properties of the high-thixotropy 3D printing concrete, Construction and Building Materials, 201, 278-285. https://doi.org/10.1016/j.conbuildmat.2018.12.061