DOI QR코드

DOI QR Code

Anti-inflammatory, Anti-glycation, Anti-tyrosinase and CDK4 Inhibitory Activities of Alaternin (=7-Hydroxyemodin)

  • Bhatarrai, Grishma (Department of Food and Life Sciences, Pukyoung National University) ;
  • Choi, Jeong-Wook (Department of Food and Life Sciences, Pukyoung National University) ;
  • Seong, Su Hui (Department of Food and Life Sciences, Pukyoung National University) ;
  • Nam, Taek-Jeong (Department of Food and Life Sciences, Pukyoung National University) ;
  • Jung, Hyun Ah (Department of Food Science and Human Nutrition, Jeonbuk National University) ;
  • Choi, Jae Sue (Department of Food and Life Sciences, Pukyoung National University)
  • Received : 2020.12.30
  • Accepted : 2021.02.18
  • Published : 2021.03.31

Abstract

The aim of this study was to anatomize the therapeutic potential of alaternin (=7-hydroxyemodin) against inflammation, advanced glycation end products (AGEs) formation, tyrosinase, and two cyclin-dependent kinases (CDKs), CDK2 and CDK4, and compare its potency with emodin. Alaternin showed lower cytotoxicity and higher dose-dependent inhibition against lipopolysaccharide (LPS) induced nitric oxide (NO) production with half maximal inhibitory concentration (IC50) of 18.68 µM. Similarly, alaternin efficaciously inhibited biotransformation of fluorescent AGEs and amyloid cross-β structure on the bovine serum albumin (BSA)-glucose-fructose system, five times more than emodin. Interestingly, alaternin also showed selective activity against CDK4 at 170 µM, whereas emodin inhibited both CDK2 and CDK4 at a concentration of 17 and 380 µM respectively. In addition, alaternin showed dose-dependent inhibitory activity against mushroom tyrosinase with inhibition percentage of 35.84 % at 400 µM. Altogether, alaternin with pronounced inhibition against inflammatory mediator (NO), glycated products formation, and targeted inhibition towards CDK4 receptor can be taken as an important candidate to target multiple diseases.

Keywords

References

  1. Ali, M. Y.; Jannat, S.; Jung, H. A.; Min, B. S.; Paudel, P.; Choi, J. S. J. Food Biochem. 2018, 42, e12439. https://doi.org/10.1111/jfbc.12439
  2. Paudel, P.; Jung, H. A.; Choi, J. S. Arch. Pharm. Res. 2018, 41, 677-689. https://doi.org/10.1007/s12272-018-1040-4
  3. Jung, H. A.; Ali, M. Y.; Jung, H. J.; Jeong, H. O.; Chung, H. Y.; Choi, J. S. J. Ethnopharmacol. 2016, 191, 152-160. https://doi.org/10.1016/j.jep.2016.06.037
  4. Khan, K.; Karodi, R.; Siddiqui, A.; Thube, S.; Rub, R. Int. J. Appl. Res. Nat. Prod. 2011, 4, 28-36.
  5. Kwon, K. S.; Lee, J. H.; So, K. S.; Park, B. K.; Lim, H.; Choi, J. S.; Kim, H. P. Phytother. Res. 2018, 32, 1537-1545. https://doi.org/10.1002/ptr.6082
  6. Choi, B. S.; Kim, Y. J.; Choi, J. S.; Lee, H. J.; Lee, C. J. Phytother. Res. 2019, 33, 919-928. https://doi.org/10.1002/ptr.6284
  7. Wuthi-udomlert, M.; Kupittayanant, P.; Gritsanapan, W. J. Health Res. 2010, 24, 117-122.
  8. Fosso, M. Y.; Chan, K. Y.; Gregory, R.; Chang, C. W. T. ACS Comb. Sci. 2012, 14, 231-235. https://doi.org/10.1021/co2002075
  9. Hsu, S. C.; Chung, J. G. BioMedicine 2012, 2, 108-116. https://doi.org/10.1016/j.biomed.2012.03.003
  10. Jung, H. A.; Ali, M. Y.; Choi, J. S. Molecules 2017, 22, 28. https://doi.org/10.3390/molecules22010028
  11. Park, T. H.; Kim, D. H.; Kim, C. H.; Jung, H. A.; Choi, J. S.; Lee, J. W.; Chung, H. Y. J. Pharm. Pharmacol. 2004, 56, 1315-1321. https://doi.org/10.1211/0022357044229
  12. Song, R.; Xu, F.; Zhang, Z.; Liu, Y.; Dong, H.; Tian, Y. Biomed. Chromatogr. 2008, 22, 1230-1236. https://doi.org/10.1002/bmc.1050
  13. Jung, H. A.; Chung, H. Y.; Yokozawa, T.; Kim, Y. C.; Hyun, S. K.; Choi, J. S. Arch. Pharm. Res. 2004, 27, 947-953. https://doi.org/10.1007/BF02975849
  14. Paudel, P.; Seong, S. H.; Shrestha, S.; Jung, H. A.; Choi, J. S. ACS Omega 2019, 4, 16139-16152. https://doi.org/10.1021/acsomega.9b02328
  15. Zin, W. W. M.; Buttachon, S.; Dethoup, T.; Pereira, J. A.; Gales, L.; Inacio. A.; Costa, P. M.; Lee, M.; Sekeroglu, N.; Silva, A. M. S.; Pinto, M. M. M.; Kijjoa, A. Phytochemistry 2017, 141, 86-97. https://doi.org/10.1016/j.phytochem.2017.05.015
  16. Li, H. L.; Chen, H. L.; Li, H.; Zhang, K. L.; Chen, X. Y.; Wang, X. W.; Kong, Q. Y.; Liu, J. Int. J. Mol. Med. 2005, 16, 41-47. https://doi.org/10.1007/s00894-004-0218-5
  17. Tian, S. L.; Yang, Y.; Liu, X. L.; Xu, Q. B. Med. Sci. Monit. 2018, 24, 1-10. https://doi.org/10.12659/MSM.905496
  18. Dong, X.; Fu, J.; Yin, X.; Cao, S.; Li, X.; Lin, L.; Huyiligeqi.; Ni, J. Phytother. Res. 2016, 30, 1207-1218. https://doi.org/10.1002/ptr.5631
  19. Maurent, K.; Vanucci-Bacque, C.; Baltas, M.; Negre-Salvayre, A.; Auge, N.; Bedos-Belval, F. Eur. J. Med. Chem. 2018, 144, 289-299. https://doi.org/10.1016/j.ejmech.2017.12.033
  20. Jerca, L.; Jerca, O.; Mancas, G.; Constantinescu, I.; Lupusoru, R. J. Preven. Med. 2002, 10, 35-45.
  21. Nathan, C. FASEB J. 1992, 6, 3051-3064. https://doi.org/10.1096/fasebj.6.12.1381691
  22. Mittal, M.; Siddiqui, M. R.; Tran, K.; Reddy, S. P.; Malik, A. B. Antioxid. Redox Signal. 2014, 20, 1126-1167. https://doi.org/10.1089/ars.2012.5149
  23. Cepas, V.; Collino, M.; Mayo, J. C.; Sainz, R. M. Antioxidants 2020, 9, 142. https://doi.org/10.3390/antiox9020142
  24. Lee, G. Y.; Jang, D. S.; Lee, Y. M.; Kim, J. M.; Kim, J. S. Arch. Pharm. Res. 2006, 29, 587-590. https://doi.org/10.1007/BF02969270
  25. da Costa Silva, T.; Justino, A. B.; Prado, D. G.; Koch, G. A.; Martins, M. M.; de Souza Santos, P.; de Morais, S. A. L.; Goulart, L. R.; Cunha, L. C. S.; de Souza, R. M. F.; Espindola, F. S.; Oliveira, A. Ind. Crops Prod. 2019, 140, 111641. https://doi.org/10.1016/j.indcrop.2019.111641
  26. Jang, D. S.; Lee, G. Y.; Kim, Y. S.; Lee, Y. M.; Kim, C. S.; Yoo, J. L.; Kim, J. S. Biol. Pharm. Bull. 2007, 30, 2207-2210. https://doi.org/10.1248/bpb.30.2207
  27. Yeh, W. J.; Hsia, S. M.; Lee, W. H.; Wu, C. H. J. Food Drug Anal. 2017, 25, 84-92. https://doi.org/10.1016/j.jfda.2016.10.017
  28. Guarneri, F.; Custurone, P.; Papaianni, V.; Gangemi, S. Antioxidants 2021, 10, 82. https://doi.org/10.3390/antiox10010082
  29. Yoshizawa, K.; Takeuchi, K.; Nakamura, T.; Ukai, S.; Takahashi, Y.; Sato, A.; Takasawa, R.; Tanuma, S. Synapse 2020, 75, e22188.
  30. Ikuta, M.; Kamata, K.; Fukasawa, K.; Honma, T.; Machida, T.; Hirai, H.; Suzuki-Takahashi, I. ; Hayama, T.; Nishimura, S. J. Biol. Chem. 2001, 276, 27548-27554. https://doi.org/10.1074/jbc.M102060200
  31. Wang, H.; Iakova, P.; Wilde, M.; Welm, A.; Goode, T.; Roesler, W. J.; Timchenko, N. A. Mol. Cell. 2001, 8, 817-828. https://doi.org/10.1016/S1097-2765(01)00366-5
  32. DiPippo, A. J.; Patel, N. K.; Barnett, C. M. Pharmacotherapy 2016, 36, 652-667. https://doi.org/10.1002/phar.1756
  33. Aixiao, L.; Florent, B.; Francois, M.; Michel, D.; Baoshan, W. J. Mol. Struct. Theochem 2008, 849, 62-75. https://doi.org/10.1016/j.theochem.2007.10.015
  34. Verbon, E. H.; Post, J. A.; Boonstra, J. Gene 2012, 511, 1-6. https://doi.org/10.1016/j.gene.2012.08.038
  35. Liu, Y.; Piao, X. J.; Xu, W. T.; Zhang, Y.; Zhang, T.; Xue, H.; Li, Y. N.; Zuo, W. B.; Sun, G.; Fu, Z. R.; Luo, Y. H.; Jin, C. H. Toxicol. In Vitro 2021, 70, 105052. https://doi.org/10.1016/j.tiv.2020.105052
  36. Phan, T. N.; Kim, O.; Ha, M. T.; Hwangbo, C.; Min, B. S.; Lee, J. H. Int. J. Mol. Sci. 2020, 21, 9502. https://doi.org/10.3390/ijms21249502
  37. Nihei, K. I.; Kubo, I. Plant Physiol. Biochem. 2017, 112, 278-282. https://doi.org/10.1016/j.plaphy.2017.01.009
  38. Thitimuta, S.; Pithayanukul, P.; Nithitanakool, S.; Bavovada, R.; Leanpolchareanchai, J.; Saparpakorn, P. Molecules 2017, 22, 401. https://doi.org/10.3390/molecules22030401
  39. Choi, J. S.; Chung, H. Y.; Jung, H. A.; Park, H. J.; Yokozawa, T. J. Agric. Food Chem. 2000, 48, 6347-6351. https://doi.org/10.1021/jf000936r
  40. Lee, M. K.; Choi, J. W.; Choi, Y. H.; Nam, T. J. Mar. Drugs 2019, 17, 284. https://doi.org/10.3390/md17050284
  41. Islam, M. N.; Ishita, I. J.; Jung, H. A.; Choi, J. S. Food Chem. Toxicol. 2014, 69, 55-62. https://doi.org/10.1016/j.fct.2014.03.042
  42. Tupe, R. S.; Agte, V. V. Br. J. Nutr. 2010, 103, 370-377. https://doi.org/10.1017/S0007114509991929
  43. Kitagawa, M.; Higashi, H.; Takahashi, I. S.; Okabe, T.; Ogino, H.; Taya, Y.; Hishimura, S.; Okuyama, A. Oncogene 1994, 9, 2549-2557.
  44. Carlino, L.; Christodoulou, M. S.; Restelli, V.; Caporuscio, F.; Foschi, F.; Semrau, M. S.; Costanzi, E.; Tinivella, A.; Pinzi, L.; Lo Presti, L.; Battistutta, R.; Storici, P.; Broggini, M.; Passarella, D.; Rastelli, G. Chem. Med. Chem. 2018, 13, 2627-2634. https://doi.org/10.1002/cmdc.201800687
  45. Grigoroudis, A. I.; Kontopidis, G. Methods Mol. Biol. 2016, 1336, 29-45. https://doi.org/10.1007/978-1-4939-2926-9_4
  46. Masuda, T.; Odaka, Y.; Ogawa, N.; Nakamoto, K.; Kuninaga, H. J. Agric. Food Chem. 2008, 56, 597-601. https://doi.org/10.1021/jf072893l
  47. Zheng, Z. P.; Chen, S.; Wang, S.; Wang, X. C.; Cheng, K. W.; Wu, J. J.; Yang, D.; Wang, M. J. Agric. Food Chem. 2009, 57, 6649-6655. https://doi.org/10.1021/jf9014685
  48. Cervellati, C.; Trentini, A.; Pecorelli, A.; Valacchi, G. Antioxid. Redox Signal. 2020, 22, 191-210. https://doi.org/10.1089/ars.2020.8076
  49. Geronikaki, A. A.; Gavalas, A. M. Comb. Chem. High Throughput Screen. 2006, 9, 425-442. https://doi.org/10.2174/138620706777698481
  50. Tripathi, P.; Tripathi, P.; Kashyap, L.; Singh, V. FEMS Immunol. Med. Microbiol. 2007, 51, 443-452. https://doi.org/10.1111/j.1574-695X.2007.00329.x
  51. Bi, X.; Jiang, B.; Zhou, J.; Luo, L.; Yin, Z. Cell Biol. Int. 2020, 44, 253-267. https://doi.org/10.1002/cbin.11228
  52. Meng, Z.; Yan, C.; Deng, Q.; Gao, D. F.; Niu, X. L. Acta Pharmacol. Sin. 2013, 34, 901-911. https://doi.org/10.1038/aps.2013.24
  53. Afonso, V.; Champy, R.; Mitrovic, D.; Collin, P.; Lomri, A. Joint Bone Spine 2007, 74, 324-329. https://doi.org/10.1016/j.jbspin.2007.02.002
  54. Choudhury, S.; Ghosh, S.; Mukherjee, S.; Gupta, P.; Bhattacharya, S.; Adhikary, A.; Chattopadhyay, S. J. Nutr. Biochem. 2016, 38, 25-40. https://doi.org/10.1016/j.jnutbio.2016.09.001
  55. Menegazzi, M.; Masiello, P.; Novelli, M. Antioxidants 2021, 10, 18. https://doi.org/10.3390/antiox10010018
  56. Romeo, M. A.; Montani, M. S. G.; Benedetti, R.; Giambelli, L.; D'Aprile, R.; Gaeta, A.; Faggioni, A.; Cirone, M. Virus Res. 2021, 292, 198231. https://doi.org/10.1016/j.virusres.2020.198231
  57. Shiota, M. Cancer 2021, 15-26.
  58. Choi, J. S.; Lee, H. J.; Kang, S. S. Arch. Pharm. Res. 1994, 17, 462-466. https://doi.org/10.1007/BF02979126
  59. Lu, T. M.; Ko, H. H. Nat. Prod. Res. 2016, 30, 2655-2661. https://doi.org/10.1080/14786419.2016.1138300
  60. Li, Y.; Xiong, W.; Yang, J.; Zhong, J.; Zhang, L.; Zheng, J.; Liu, H.; Zhang, Q.; Lei, L.; Yu, X. Iran. J. Kidney Dis. 2015, 9, 202-208.
  61. Wang, C. C.; Huang, Y. J.; Chen, L. G.; Lee, L. T.; Yang, L. L. Planta Med. 2002, 68, 869-874. https://doi.org/10.1055/s-2002-34918
  62. Jung, H. A.; Park, J. J.; Min, B. S.; Jung, H. J.; Islam, M. N.; Choi, J. S. Asian Pac. J. Trop. Med. 2015, 8, 1-5. https://doi.org/10.1016/S1995-7645(14)60178-4
  63. Hicks, M.; Delbridge, L.; Yue, D. K.; Reeve, T. S. Biochem. Biophys. Res. Commun. 1988. 151, 649-655. https://doi.org/10.1016/S0006-291X(88)80330-9
  64. Ott, C.; Jacobs, K.; Haucke, E.; Santos, A. N.; Grune, T.; Simm, A. Redox Biol. 2014, 2, 411-429. https://doi.org/10.1016/j.redox.2013.12.016
  65. Prasad, K. Mol. Cell. Biochem. 2019, 451, 139-144. https://doi.org/10.1007/s11010-018-3400-2
  66. Di Marco, E.; Gray, S. P.; Jandeleit-Dahm, K. Front. Endocrinol. 2013, 4, 68. https://doi.org/10.3389/fendo.2013.00068
  67. Goh, S. Y.; Cooper, M. E. J. Clin. Endocrinol. Metab. 2008, 93, 1143-1152. https://doi.org/10.1210/jc.2007-1817
  68. Bohlender, J. R. M.; Franke, S.; Stein, G.; Wolf, G. Am. J. Physiol. Renal Physiol. 2005, 289, F645-F659. https://doi.org/10.1152/ajprenal.00398.2004
  69. Chou, P. S.; Wu, M. N.; Yang, C. C.; Shen, C. T.; Yang, Y. H. J. Alzheimers Dis. 2019, 72, 191-197. https://doi.org/10.3233/JAD-190639
  70. Sheikpranbabu, S.; Kalishwaralal, K.; Lee, K. J.; Vaidyanathan, R.; Eom, S. H.; Gurunathan, S. Biomaterials 2010, 31, 2260-2271. https://doi.org/10.1016/j.biomaterials.2009.11.076
  71. Hogan, M.; Cerami, A.; Bucala, R. J. Clin. Invest. 1992, 90, 1110-1115. https://doi.org/10.1172/JCI115928
  72. Nakagawa, T.; Yokozawa, T.; Kim, Y. A.; Kang, K. S.; Tanaka, T. Am. J. Chin. Med. 2005, 33, 817-829. https://doi.org/10.1142/S0192415X05003375
  73. Ji, K.; Cho, Y. S.; Kim, Y. T. Probiotics Antimicrob. Proteins 2018, 10, 43-55. https://doi.org/10.1007/s12602-017-9274-x
  74. Leu, Y. L.; Hwang, T. L.; Hu, J. W.; Fang, J. Y. Phytother. Res. 2008, 22, 552-556. https://doi.org/10.1002/ptr.2324
  75. Perillo, B.; Di Donato, M.; Pezone, A.; Di Zazzo, E.; Giovannelli, P.; Galasso, G.; Castoria, G.; Migliaccio, A. Exp. Mol. Med. 2020, 52, 192-203. https://doi.org/10.1038/s12276-020-0384-2
  76. Khandrika, L.; Kumar, B.; Koul, S.; Maroni, P.; Koul, H. K. Cancer Lett. 2009, 282, 125-136. https://doi.org/10.1016/j.canlet.2008.12.011
  77. Colotta, F.; Allavena, P.; Sica, A.; Garlanda, C.; Mantovani, A. Carcinogenesis. 2009, 30, 1073-1081. https://doi.org/10.1093/carcin/bgp127
  78. Reuter, S.; Gupta, S. C.; Chaturvedi, M. M.; Aggrawal, B. B. Free Radic. Biol. Med. 2010, 49, 1603-1616. https://doi.org/10.1016/j.freeradbiomed.2010.09.006
  79. Shendge, A. K.; Chaudhuri, D.; Mandal, N. Mol. Biol. Rep. 2021, 48, 539-549. https://doi.org/10.1007/s11033-020-06087-x
  80. O'Leary, B.; Finn, R. S.; Turner, N. C. Nat. Rev. Clin. Oncol. 2016, 13, 417-430. https://doi.org/10.1038/nrclinonc.2016.26

Cited by

  1. Bioactive Phytochemicals from Mulberry: Potential Anti-Inflammatory Effects in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages vol.22, pp.15, 2021, https://doi.org/10.3390/ijms22158120