References
- Ali, M. Y.; Jannat, S.; Jung, H. A.; Min, B. S.; Paudel, P.; Choi, J. S. J. Food Biochem. 2018, 42, e12439. https://doi.org/10.1111/jfbc.12439
- Paudel, P.; Jung, H. A.; Choi, J. S. Arch. Pharm. Res. 2018, 41, 677-689. https://doi.org/10.1007/s12272-018-1040-4
- Jung, H. A.; Ali, M. Y.; Jung, H. J.; Jeong, H. O.; Chung, H. Y.; Choi, J. S. J. Ethnopharmacol. 2016, 191, 152-160. https://doi.org/10.1016/j.jep.2016.06.037
- Khan, K.; Karodi, R.; Siddiqui, A.; Thube, S.; Rub, R. Int. J. Appl. Res. Nat. Prod. 2011, 4, 28-36.
- Kwon, K. S.; Lee, J. H.; So, K. S.; Park, B. K.; Lim, H.; Choi, J. S.; Kim, H. P. Phytother. Res. 2018, 32, 1537-1545. https://doi.org/10.1002/ptr.6082
- Choi, B. S.; Kim, Y. J.; Choi, J. S.; Lee, H. J.; Lee, C. J. Phytother. Res. 2019, 33, 919-928. https://doi.org/10.1002/ptr.6284
- Wuthi-udomlert, M.; Kupittayanant, P.; Gritsanapan, W. J. Health Res. 2010, 24, 117-122.
- Fosso, M. Y.; Chan, K. Y.; Gregory, R.; Chang, C. W. T. ACS Comb. Sci. 2012, 14, 231-235. https://doi.org/10.1021/co2002075
- Hsu, S. C.; Chung, J. G. BioMedicine 2012, 2, 108-116. https://doi.org/10.1016/j.biomed.2012.03.003
- Jung, H. A.; Ali, M. Y.; Choi, J. S. Molecules 2017, 22, 28. https://doi.org/10.3390/molecules22010028
- Park, T. H.; Kim, D. H.; Kim, C. H.; Jung, H. A.; Choi, J. S.; Lee, J. W.; Chung, H. Y. J. Pharm. Pharmacol. 2004, 56, 1315-1321. https://doi.org/10.1211/0022357044229
- Song, R.; Xu, F.; Zhang, Z.; Liu, Y.; Dong, H.; Tian, Y. Biomed. Chromatogr. 2008, 22, 1230-1236. https://doi.org/10.1002/bmc.1050
- Jung, H. A.; Chung, H. Y.; Yokozawa, T.; Kim, Y. C.; Hyun, S. K.; Choi, J. S. Arch. Pharm. Res. 2004, 27, 947-953. https://doi.org/10.1007/BF02975849
- Paudel, P.; Seong, S. H.; Shrestha, S.; Jung, H. A.; Choi, J. S. ACS Omega 2019, 4, 16139-16152. https://doi.org/10.1021/acsomega.9b02328
- Zin, W. W. M.; Buttachon, S.; Dethoup, T.; Pereira, J. A.; Gales, L.; Inacio. A.; Costa, P. M.; Lee, M.; Sekeroglu, N.; Silva, A. M. S.; Pinto, M. M. M.; Kijjoa, A. Phytochemistry 2017, 141, 86-97. https://doi.org/10.1016/j.phytochem.2017.05.015
- Li, H. L.; Chen, H. L.; Li, H.; Zhang, K. L.; Chen, X. Y.; Wang, X. W.; Kong, Q. Y.; Liu, J. Int. J. Mol. Med. 2005, 16, 41-47. https://doi.org/10.1007/s00894-004-0218-5
- Tian, S. L.; Yang, Y.; Liu, X. L.; Xu, Q. B. Med. Sci. Monit. 2018, 24, 1-10. https://doi.org/10.12659/MSM.905496
- Dong, X.; Fu, J.; Yin, X.; Cao, S.; Li, X.; Lin, L.; Huyiligeqi.; Ni, J. Phytother. Res. 2016, 30, 1207-1218. https://doi.org/10.1002/ptr.5631
- Maurent, K.; Vanucci-Bacque, C.; Baltas, M.; Negre-Salvayre, A.; Auge, N.; Bedos-Belval, F. Eur. J. Med. Chem. 2018, 144, 289-299. https://doi.org/10.1016/j.ejmech.2017.12.033
- Jerca, L.; Jerca, O.; Mancas, G.; Constantinescu, I.; Lupusoru, R. J. Preven. Med. 2002, 10, 35-45.
- Nathan, C. FASEB J. 1992, 6, 3051-3064. https://doi.org/10.1096/fasebj.6.12.1381691
- Mittal, M.; Siddiqui, M. R.; Tran, K.; Reddy, S. P.; Malik, A. B. Antioxid. Redox Signal. 2014, 20, 1126-1167. https://doi.org/10.1089/ars.2012.5149
- Cepas, V.; Collino, M.; Mayo, J. C.; Sainz, R. M. Antioxidants 2020, 9, 142. https://doi.org/10.3390/antiox9020142
- Lee, G. Y.; Jang, D. S.; Lee, Y. M.; Kim, J. M.; Kim, J. S. Arch. Pharm. Res. 2006, 29, 587-590. https://doi.org/10.1007/BF02969270
- da Costa Silva, T.; Justino, A. B.; Prado, D. G.; Koch, G. A.; Martins, M. M.; de Souza Santos, P.; de Morais, S. A. L.; Goulart, L. R.; Cunha, L. C. S.; de Souza, R. M. F.; Espindola, F. S.; Oliveira, A. Ind. Crops Prod. 2019, 140, 111641. https://doi.org/10.1016/j.indcrop.2019.111641
- Jang, D. S.; Lee, G. Y.; Kim, Y. S.; Lee, Y. M.; Kim, C. S.; Yoo, J. L.; Kim, J. S. Biol. Pharm. Bull. 2007, 30, 2207-2210. https://doi.org/10.1248/bpb.30.2207
- Yeh, W. J.; Hsia, S. M.; Lee, W. H.; Wu, C. H. J. Food Drug Anal. 2017, 25, 84-92. https://doi.org/10.1016/j.jfda.2016.10.017
- Guarneri, F.; Custurone, P.; Papaianni, V.; Gangemi, S. Antioxidants 2021, 10, 82. https://doi.org/10.3390/antiox10010082
- Yoshizawa, K.; Takeuchi, K.; Nakamura, T.; Ukai, S.; Takahashi, Y.; Sato, A.; Takasawa, R.; Tanuma, S. Synapse 2020, 75, e22188.
- Ikuta, M.; Kamata, K.; Fukasawa, K.; Honma, T.; Machida, T.; Hirai, H.; Suzuki-Takahashi, I. ; Hayama, T.; Nishimura, S. J. Biol. Chem. 2001, 276, 27548-27554. https://doi.org/10.1074/jbc.M102060200
- Wang, H.; Iakova, P.; Wilde, M.; Welm, A.; Goode, T.; Roesler, W. J.; Timchenko, N. A. Mol. Cell. 2001, 8, 817-828. https://doi.org/10.1016/S1097-2765(01)00366-5
- DiPippo, A. J.; Patel, N. K.; Barnett, C. M. Pharmacotherapy 2016, 36, 652-667. https://doi.org/10.1002/phar.1756
- Aixiao, L.; Florent, B.; Francois, M.; Michel, D.; Baoshan, W. J. Mol. Struct. Theochem 2008, 849, 62-75. https://doi.org/10.1016/j.theochem.2007.10.015
- Verbon, E. H.; Post, J. A.; Boonstra, J. Gene 2012, 511, 1-6. https://doi.org/10.1016/j.gene.2012.08.038
- Liu, Y.; Piao, X. J.; Xu, W. T.; Zhang, Y.; Zhang, T.; Xue, H.; Li, Y. N.; Zuo, W. B.; Sun, G.; Fu, Z. R.; Luo, Y. H.; Jin, C. H. Toxicol. In Vitro 2021, 70, 105052. https://doi.org/10.1016/j.tiv.2020.105052
- Phan, T. N.; Kim, O.; Ha, M. T.; Hwangbo, C.; Min, B. S.; Lee, J. H. Int. J. Mol. Sci. 2020, 21, 9502. https://doi.org/10.3390/ijms21249502
- Nihei, K. I.; Kubo, I. Plant Physiol. Biochem. 2017, 112, 278-282. https://doi.org/10.1016/j.plaphy.2017.01.009
- Thitimuta, S.; Pithayanukul, P.; Nithitanakool, S.; Bavovada, R.; Leanpolchareanchai, J.; Saparpakorn, P. Molecules 2017, 22, 401. https://doi.org/10.3390/molecules22030401
- Choi, J. S.; Chung, H. Y.; Jung, H. A.; Park, H. J.; Yokozawa, T. J. Agric. Food Chem. 2000, 48, 6347-6351. https://doi.org/10.1021/jf000936r
- Lee, M. K.; Choi, J. W.; Choi, Y. H.; Nam, T. J. Mar. Drugs 2019, 17, 284. https://doi.org/10.3390/md17050284
- Islam, M. N.; Ishita, I. J.; Jung, H. A.; Choi, J. S. Food Chem. Toxicol. 2014, 69, 55-62. https://doi.org/10.1016/j.fct.2014.03.042
- Tupe, R. S.; Agte, V. V. Br. J. Nutr. 2010, 103, 370-377. https://doi.org/10.1017/S0007114509991929
- Kitagawa, M.; Higashi, H.; Takahashi, I. S.; Okabe, T.; Ogino, H.; Taya, Y.; Hishimura, S.; Okuyama, A. Oncogene 1994, 9, 2549-2557.
- Carlino, L.; Christodoulou, M. S.; Restelli, V.; Caporuscio, F.; Foschi, F.; Semrau, M. S.; Costanzi, E.; Tinivella, A.; Pinzi, L.; Lo Presti, L.; Battistutta, R.; Storici, P.; Broggini, M.; Passarella, D.; Rastelli, G. Chem. Med. Chem. 2018, 13, 2627-2634. https://doi.org/10.1002/cmdc.201800687
- Grigoroudis, A. I.; Kontopidis, G. Methods Mol. Biol. 2016, 1336, 29-45. https://doi.org/10.1007/978-1-4939-2926-9_4
- Masuda, T.; Odaka, Y.; Ogawa, N.; Nakamoto, K.; Kuninaga, H. J. Agric. Food Chem. 2008, 56, 597-601. https://doi.org/10.1021/jf072893l
- Zheng, Z. P.; Chen, S.; Wang, S.; Wang, X. C.; Cheng, K. W.; Wu, J. J.; Yang, D.; Wang, M. J. Agric. Food Chem. 2009, 57, 6649-6655. https://doi.org/10.1021/jf9014685
- Cervellati, C.; Trentini, A.; Pecorelli, A.; Valacchi, G. Antioxid. Redox Signal. 2020, 22, 191-210. https://doi.org/10.1089/ars.2020.8076
- Geronikaki, A. A.; Gavalas, A. M. Comb. Chem. High Throughput Screen. 2006, 9, 425-442. https://doi.org/10.2174/138620706777698481
- Tripathi, P.; Tripathi, P.; Kashyap, L.; Singh, V. FEMS Immunol. Med. Microbiol. 2007, 51, 443-452. https://doi.org/10.1111/j.1574-695X.2007.00329.x
- Bi, X.; Jiang, B.; Zhou, J.; Luo, L.; Yin, Z. Cell Biol. Int. 2020, 44, 253-267. https://doi.org/10.1002/cbin.11228
- Meng, Z.; Yan, C.; Deng, Q.; Gao, D. F.; Niu, X. L. Acta Pharmacol. Sin. 2013, 34, 901-911. https://doi.org/10.1038/aps.2013.24
- Afonso, V.; Champy, R.; Mitrovic, D.; Collin, P.; Lomri, A. Joint Bone Spine 2007, 74, 324-329. https://doi.org/10.1016/j.jbspin.2007.02.002
- Choudhury, S.; Ghosh, S.; Mukherjee, S.; Gupta, P.; Bhattacharya, S.; Adhikary, A.; Chattopadhyay, S. J. Nutr. Biochem. 2016, 38, 25-40. https://doi.org/10.1016/j.jnutbio.2016.09.001
- Menegazzi, M.; Masiello, P.; Novelli, M. Antioxidants 2021, 10, 18. https://doi.org/10.3390/antiox10010018
- Romeo, M. A.; Montani, M. S. G.; Benedetti, R.; Giambelli, L.; D'Aprile, R.; Gaeta, A.; Faggioni, A.; Cirone, M. Virus Res. 2021, 292, 198231. https://doi.org/10.1016/j.virusres.2020.198231
- Shiota, M. Cancer 2021, 15-26.
- Choi, J. S.; Lee, H. J.; Kang, S. S. Arch. Pharm. Res. 1994, 17, 462-466. https://doi.org/10.1007/BF02979126
- Lu, T. M.; Ko, H. H. Nat. Prod. Res. 2016, 30, 2655-2661. https://doi.org/10.1080/14786419.2016.1138300
- Li, Y.; Xiong, W.; Yang, J.; Zhong, J.; Zhang, L.; Zheng, J.; Liu, H.; Zhang, Q.; Lei, L.; Yu, X. Iran. J. Kidney Dis. 2015, 9, 202-208.
- Wang, C. C.; Huang, Y. J.; Chen, L. G.; Lee, L. T.; Yang, L. L. Planta Med. 2002, 68, 869-874. https://doi.org/10.1055/s-2002-34918
- Jung, H. A.; Park, J. J.; Min, B. S.; Jung, H. J.; Islam, M. N.; Choi, J. S. Asian Pac. J. Trop. Med. 2015, 8, 1-5. https://doi.org/10.1016/S1995-7645(14)60178-4
- Hicks, M.; Delbridge, L.; Yue, D. K.; Reeve, T. S. Biochem. Biophys. Res. Commun. 1988. 151, 649-655. https://doi.org/10.1016/S0006-291X(88)80330-9
- Ott, C.; Jacobs, K.; Haucke, E.; Santos, A. N.; Grune, T.; Simm, A. Redox Biol. 2014, 2, 411-429. https://doi.org/10.1016/j.redox.2013.12.016
- Prasad, K. Mol. Cell. Biochem. 2019, 451, 139-144. https://doi.org/10.1007/s11010-018-3400-2
- Di Marco, E.; Gray, S. P.; Jandeleit-Dahm, K. Front. Endocrinol. 2013, 4, 68. https://doi.org/10.3389/fendo.2013.00068
- Goh, S. Y.; Cooper, M. E. J. Clin. Endocrinol. Metab. 2008, 93, 1143-1152. https://doi.org/10.1210/jc.2007-1817
- Bohlender, J. R. M.; Franke, S.; Stein, G.; Wolf, G. Am. J. Physiol. Renal Physiol. 2005, 289, F645-F659. https://doi.org/10.1152/ajprenal.00398.2004
- Chou, P. S.; Wu, M. N.; Yang, C. C.; Shen, C. T.; Yang, Y. H. J. Alzheimers Dis. 2019, 72, 191-197. https://doi.org/10.3233/JAD-190639
- Sheikpranbabu, S.; Kalishwaralal, K.; Lee, K. J.; Vaidyanathan, R.; Eom, S. H.; Gurunathan, S. Biomaterials 2010, 31, 2260-2271. https://doi.org/10.1016/j.biomaterials.2009.11.076
- Hogan, M.; Cerami, A.; Bucala, R. J. Clin. Invest. 1992, 90, 1110-1115. https://doi.org/10.1172/JCI115928
- Nakagawa, T.; Yokozawa, T.; Kim, Y. A.; Kang, K. S.; Tanaka, T. Am. J. Chin. Med. 2005, 33, 817-829. https://doi.org/10.1142/S0192415X05003375
- Ji, K.; Cho, Y. S.; Kim, Y. T. Probiotics Antimicrob. Proteins 2018, 10, 43-55. https://doi.org/10.1007/s12602-017-9274-x
- Leu, Y. L.; Hwang, T. L.; Hu, J. W.; Fang, J. Y. Phytother. Res. 2008, 22, 552-556. https://doi.org/10.1002/ptr.2324
- Perillo, B.; Di Donato, M.; Pezone, A.; Di Zazzo, E.; Giovannelli, P.; Galasso, G.; Castoria, G.; Migliaccio, A. Exp. Mol. Med. 2020, 52, 192-203. https://doi.org/10.1038/s12276-020-0384-2
- Khandrika, L.; Kumar, B.; Koul, S.; Maroni, P.; Koul, H. K. Cancer Lett. 2009, 282, 125-136. https://doi.org/10.1016/j.canlet.2008.12.011
- Colotta, F.; Allavena, P.; Sica, A.; Garlanda, C.; Mantovani, A. Carcinogenesis. 2009, 30, 1073-1081. https://doi.org/10.1093/carcin/bgp127
- Reuter, S.; Gupta, S. C.; Chaturvedi, M. M.; Aggrawal, B. B. Free Radic. Biol. Med. 2010, 49, 1603-1616. https://doi.org/10.1016/j.freeradbiomed.2010.09.006
- Shendge, A. K.; Chaudhuri, D.; Mandal, N. Mol. Biol. Rep. 2021, 48, 539-549. https://doi.org/10.1007/s11033-020-06087-x
- O'Leary, B.; Finn, R. S.; Turner, N. C. Nat. Rev. Clin. Oncol. 2016, 13, 417-430. https://doi.org/10.1038/nrclinonc.2016.26
Cited by
- Bioactive Phytochemicals from Mulberry: Potential Anti-Inflammatory Effects in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages vol.22, pp.15, 2021, https://doi.org/10.3390/ijms22158120