DOI QR코드

DOI QR Code

Change on Blood Parameter, Fecal Microorganism and Physiological of Neonatal Foal by Different Digestible Energy Level on Pregnant Mares

에너지 수준별 사료 급여가 임신마의 혈액과 미생물 성상 및 자마의 생시체중에 미치는 영향

  • 황원욱 (농촌진흥청 국립축산과학원 난지축산연구소) ;
  • 박남건 (농촌진흥청 국립축산과학원 난지축산연구소) ;
  • 최재영 (농촌진흥청 국립축산과학원 난지축산연구소) ;
  • 유지현 (농촌진흥청 국립축산과학원 난지축산연구소) ;
  • 조인철 (농촌진흥청 국립축산과학원 난지축산연구소) ;
  • 우제훈 (농촌진흥청 국립축산과학원 난지축산연구소)
  • Received : 2021.03.15
  • Accepted : 2021.03.26
  • Published : 2021.03.31

Abstract

The purpose of this study was to determine the optimal digestible energy levels on pregnancy mares. Physical changes and fecal microorganism in pregnant horse and changes in birth characteristics of neonatal foals were investigated. The experiment was conducted by 18 mares (Jeju corssed bred, older than 36 months) into three treatment groups. The experimental diet consisted of 80%, 100%, 120% digestible energy levels based on NRC. The average daily intake was lower in the 120% (8.75±1.01) than the 100% (9.34±0.92), 80% (9.14±0.88) and there was significant difference (p<0.05). The feed efficiency was lower in the 120% than 80%, 100% (p<0.05). Total cholesterol, HDL-cholesterol, LDL-cholesterol and triglyceride was higher in 120% than others (p<0.05). However there were no health problem and there was no difference between the treatment groups in the birth characteristics of neonatal foals. At the phylum level, Fibrobactres was difference by digestible energy levels, 80% (8.53%) was higher than 100%, 120%. At the genus level, Bacteroides and Kineothrix increased in fecal proportions with increasing digestible energy levels (p<0.05). Fibrobacter showed higher composition at 80% than 100% and 120% (p<0.05).

본 연구에서는 임신후기 암말의 영양소 급여 수준이 임신마의 생리적 변화 및 미생물 성상과 자마의 생시 특성에 미치는 영향을 조사하기 위해 분석하였다. 처리별 일일 사료 섭취량과 사료 효율은 100%, 120% 처리구에서 각각 9.3±0.9와 8.7±1.0 그리고 1.97±0.21과 1.68±023 유의적으로 나타나 가소화 에너지가 80%와 120% 수준에서 감소하는 양상을 보였다. 혈중 콜레스테롤과 관련된 항목인 총 콜레스테롤, HDL-콜레스테롤, LDL-콜레스테롤은 120% 처리구에서 높은 농도로 나타났지만 건강상의 큰 문제는 나타나지 않았다. 그리고 가소화에너지 수준에 따른 자마의 생시 특성을 비교한 결과에서도 차이를 확인할 수 없었다. 장내 미생물의 문 수준에서는 Fibrobacteres가 에너지 수준에 따른 비율 차이를 보였는데, 80%가 8.53%로 100%와 120%에 비해 높은 비율을 보였다 (p<0.05). 속 수준에서는 Bacteroides와 Kineothrix은 가소화 에너지수준이 올라 갈수록 분변 내 비율이 증가하였다 (p<0.05). Fibrobacter는 가소화 에너지가 80% 수준일 때 100%와 120%에 비해 높은 조성을 보였다 (p<0.05). 결론적으로 가소화 에너지 급여수준에 따라 임신마에게 가소화 에너지 수준별 TMR을 급여한 결과, 120% 급여구에서 사료 효율 및 지방수치가 높았으나 큰 문제는 나타나지 않았고 CBC 및 화학 수치를 조사한 결과, 모든 수치가 정상 범위 안에 있었다. 임신마의 사료 급여가 임신마뿐만 아니라 생시 자마의 생산성에도 큰 영향을 미치지 않았으나 임신마의 가소화 에너지 급여 수준에 따른 자마의 성장 특성에 대한 추가적인 연구가 필요할 것으로 사료된다.

Keywords

References

  1. Banach, M.A. and Evans, J.W. 1981. The effects of energy intake during gestation and lactation on reproductive performance in mares. Food and Agriculture Organization of the United Nations.
  2. Betz, N.L., Lanter, K.J., Breuer, L.H. and Steinke, F.H. 1979. U.S. Patent No. 4,166,867. Washington, DC: U.S. Patent and Trademark Office.
  3. Caporaso, J.G., Lauber, C.L., Walters, W.A., Berg-Lyons, D., Huntley, J., Fierer, N., Owens, S.M., Betley, J., Fraser, L. and Bauer, M. 2012. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. The ISME Journal. 6(8):1621-1624. https://doi.org/10.1038/ismej.2012.8
  4. Costa, M.C., Silva, G., Ramos, R.V., Staempfli, H.R., Arroyo, L.G., Kim, P. and Weese, J.S. 2015. Characterization and comparison of the bacterial microbiota in different gastrointestinal tract compartments in horses. The Veterinary Journal. 205(1):74-80. https://doi.org/10.1016/j.tvjl.2015.03.018
  5. Cui, K., Qi, M., Wang, S., Diao, Q. and Zhang, N. 2019. Dietary energy and protein levels influenced the growth performance, ruminal morphology and fermentation and microbial diversity of lambs. Scientific Reports. 9(1):1-10. https://doi.org/10.1038/s41598-018-37186-2
  6. De Almeida, F.Q. and De Godoi, F.N. 2011. Soybean Oil in Horses' Diets. Soybean and Nutrition, September. doi:10.5772/21751
  7. Dorland, W.A. 1981. Dorland's Illustrated medical dictionary. Saunders.
  8. Dougal, K., De la Fuente, G., Harris, P.A., Girdwood, S.E., Pinloche, E., Geor, R.J., Nielsen, B.D., Schott II, H.C., Elzinga, S. and Newbold, C.J. 2014. Characterisation of the faecal bacterial community in adult and elderly horses fed a high fibre, high oil or high starch diet using 454 pyrosequencing. PloS One. 9(2):e87424. https://doi.org/10.1371/journal.pone.0087424
  9. Dougal, K., Harris, P.A., Edwards, A., Pachebat, J.A., Blackmore, T.M., Worgan, H.J. and Newbold, C.J. 2012. A comparison of the microbiome and the metabolome of different regions of the equine hindgut. FEMS Microbiology Ecology. 82(3):642-652. https://doi.org/10.1111/j.1574-6941.2012.01441.x
  10. Haas, K.N. and Blanchard, J.L. 2017. Kineothrix alysoides, gen. nov., sp. nov., a saccharolytic butyrate-producer within the family Lachnospiraceae. International Journal of Systematic and Evolutionary Microbiology. 67(2):402-410. https://doi.org/10.1099/ijsem.0.001643
  11. Kaneko, J.J., Harvey, J.W. and Bluss, M.L. 1997. Clinical biochemistry of domestic animals (5th ed.). Academic Press, ISBN 9780123963055, New York, USA.
  12. Kowalski, J., Williams, J. and Hintz, H.F. 1990. Weight gains of mares during the last trimester of gestation. Equine Practice. 12(7):6-10.
  13. Ministry of Agriculture, Food and Rural Affairs. 2020.
  14. Morley, S.A. and Murray, J.A. 2014. Effects of body condition score on the reproductive physiology of the broodmare: A review. Journal of Equine Veterinary Science. 34(7):842-853. https://doi.org/10.1016/j.jevs.2014.04.001
  15. Neumann, A.P., McCormick, C.A. and Suen, G. 2017. Fibrobacter communities in the gastrointestinal tracts of diverse hindgut-fermenting herbivores are distinct from those of the rumen. Environmental Microbiology. 19(9):3768-3783. https://doi.org/10.1111/1462-2920.13878
  16. NRC. 2007. Nutrient Requirements of Horses (6th revolutions ed.). The National Academies Press, Washington, DC.
  17. O'Donnell, M.M., Harris, H.M., Ross, R.P. and O'Toole, P.W. 2017. Core fecal microbiota of domesticated herbivorous ruminant, hindgut fermenters, and monogastric animals. Microbiologyopen. 6(5):e00509. https://doi.org/10.1002/mbo3.509
  18. Oliveira, C.A.D.A., Almeida, F.Q., Vieira, A.A., Lana, Â.M.Q., Macedo, R., Lopes, B.A. and Corassa, A. 2003. Kinetics of passage of digesta and water and nitrogen balance in horses fed diets with different ratios of roughage and concentrate. Revista Brasileira de Zootecnia. 32(1):140-149. https://doi.org/10.1590/S1516-35982003000100018
  19. Pritchard, J.C., Burn, C.C., Barr, A.R. and Whay, H.R. 2009. Haematological and serum biochemical reference values for apparently healthy working horses in Pakistan. Research in Veterinary Science. 87(3):389-395. https://doi.org/10.1016/j.rvsc.2009.05.003
  20. SAS. 2003. Statistical Analysis System, Version 9.1 USA.
  21. Souza, A.F., Schade, J., Ramos, A.F., Albuquerque, M.S.M., Fonteque, G.V., Costa, D., Muller, T.R. and Fonteque, J.H. 2019. Serum proteinogram of the Campeiro horse. Arquivo Brasileiro de Medicina Veterinaria e Zootecnia. 71(2):363-368. https://doi.org/10.1590/1678-4162-10102
  22. Steel, R.G.D., Torrie, J.H. and Dickey, D.A. 1980. Principles and procedures of statistics (2nd ed.). McGraw-Hill, New York.
  23. Sutton, E.I., Bowland, J.P. and Ratcliff, W.D. 1977. Influence of level of energy and nutrient intake by mares on reproductive performance and on blood serum composition of the mares and foals. Canadian Journal of Animal Science. 57(3):551-558. https://doi.org/10.4141/cjas77-071