DOI QR코드

DOI QR Code

RANDOM CHORD IN A CIRCLE AND BERTRAND'S PARADOX: NEW GENERATION METHOD, EXTREME BEHAVIOUR AND LENGTH MOMENTS

  • Received : 2020.04.14
  • Accepted : 2020.10.16
  • Published : 2021.03.31

Abstract

In this paper a new generating procedure of a random chord is presented. This problem has its roots in the Bertrand's paradox. A study of the limit behaviour of its maximum length and the rate of convergence is conducted. In addition, moments of record values of random chord length are obtained for this case, as well as other cases of solutions of Bertrand's paradox.

Keywords

References

  1. D. Aerts and M. Sassoli de Bianchi, Solving the hard problem of Bertrand's paradox, J. Math. Phys. 55 (2014), no. 8, 083503, 17 pp. https://doi.org/10.1063/1.4890291
  2. M. Ahsanullah and V. B. Nevzorov, Records via Probability Theory, Atlantis Studies in Probability and Statistics, 6, Atlantis Press, Paris, 2015. https://doi.org/10.2991/978-94-6239-136-9
  3. B. C. Arnold, N. Balakrishnan, and H. N. Nagaraja, Records, Wiley Series in Probability and Statistics: Probability and Statistics, John Wiley & Sons, Inc., New York, 1998. https://doi.org/10.1002/9781118150412
  4. S. Bangu, On Bertrand's paradox, Analysis (Oxford) 70 (2010), no. 1, 30-35. https://doi.org/10.1093/analys/anp124
  5. J. Bertrand, Calcul des probabilites, Paris: Gautier-Villars et Fils, 1889.
  6. K. N. Chandler, The distribution and frequency of record values, J. Roy. Statist. Soc. Ser. B 14 (1952), 220-228.
  7. S. S. Chiu and R. C. Larson, Bertrand's paradox revisited: More lessons about that ambiguous word, Random, J. Industrial Systems Engineering (JISE) 3 (2009), no.1, 1-26.
  8. B. C. van Fraassen, Laws and Symmetry, The Clarendon Press, Oxford University Press, New York, 1989. https://doi.org/10.1093/0198248601.001.0001
  9. B. Grigelionis, Limit theorems for record values using power normalization, Lithuanian Math. J. 46 (2006), no. 4, 398-405; translated from Liet. Mat. Rink. 46 (2006), no. 4, 492-500. https://doi.org/10.1007/s10986-006-0037-8
  10. J. Holbrook and S. S. Kim, Bertrand's paradox revisited, Math. Intelligencer 22 (2000), no. 4, 16-19. https://doi.org/10.1007/BF03026762
  11. E. T. Jaynes, The well-posed problem, Found. Phys. 3 (1973), 477-492. https://doi.org/10.1007/BF00709116
  12. V. Jevremovic and M. Obradovic, Bertrand's paradox: Is there anything else?, Quality & Quantity 46 (2012), no. 6, 1709-1714. https://doi.org/10.1007/s11135-011-9553-7
  13. M. G. Kendall and P. A. P. Moran, Geometrical Probability, Griffin's Statistical Monographs & Courses, No. 10, Hafner Publishing Co., New York, 1963.
  14. E. V. Koroleva and Ya. Yu. Nikitin, U-max-statistics and limit theorems for perimeters and areas of random polygons, J. Multivariate Anal. 127 (2014), 98-111. https://doi.org/10.1016/j.jmva.2014.02.006
  15. M. R. Leadbetter, G. Lindgren, and H. Rootzen, Extremes and related properties of random sequences and processes, Springer Series in Statistics, Springer-Verlag, New York, 1983.
  16. G. D. Lin, On characterizations of distributions via moments of record values, Probab. Theory Related Fields 74 (1987), no. 4, 479-483. https://doi.org/10.1007/BF00363510
  17. L. Marinoff, A resolution of Bertrand's paradox, Philos. Sci. 61 (1994), no. 1, 1-24. https://doi.org/10.1086/289777
  18. V. B. Nevzorov, Records: mathematical theory, translated from the Russian manuscript by D. M. Chibisov, Translations of Mathematical Monographs, 194, American Mathematical Society, Providence, RI, 2001. https://doi.org/10.1090/mmono/194
  19. R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2015.
  20. S. I. Resnick, Limit laws for record values, Stochastic Process. Appl. 1 (1973), 67-82. https://doi.org/10.1016/0304-4149(73)90033-1
  21. D. Rizza, A study of mathematical determination through Bertrand's paradox, Philos. Math. (3) 26 (2018), no. 3, 375-395. https://doi.org/10.1093/philmat/nkx035
  22. N. Shackel, Bertrand's paradox and the principle of indifference, Philos. Sci. 74 (2007), no. 2, 150-175. https://doi.org/10.1086/519028
  23. A. Soranzo and A. Volcic, On the Bertrand paradox, Rend. Circ. Mat. Palermo (2) 47 (1998), no. 3, 503-509. https://doi.org/10.1007/BF02851396
  24. Z. Vidovic, Limit distribution of maximal random chord length, J. Appl. Stat. Probab. (JASP) 5 (2016), no. 2, 213-220. https://doi.org/10.18576/jsap/050202
  25. D. Zwillinger, Table of Integrals, Series and Products, Academic Press, 2007.