DOI QR코드

DOI QR Code

ON THE MIXED RADIAL-ANGULAR INTEGRABILITY OF LITTLEWOOD-PALEY FUNCTIONS

  • Zhang, Xiao (College of Mathematics and Systems Science Shandong University of Science and Technology)
  • 투고 : 2020.04.06
  • 심사 : 2020.07.09
  • 발행 : 2021.03.31

초록

This note is devoted to establishing the boundedness for some classes of Littlewood-Paley square operators defined by the kernels without any regularity on the mixed radial-angular spaces. The corresponding vector-valued versions are also presented. As applications, the corresponding results for the Littlewood-Paley g∗λ function and the Littlewood-Paley function related to the area integrals are also obtained.

키워드

참고문헌

  1. H. Al-Qassem, L. Cheng, and Y. Pan, On generalized Littlewood-Paley functions, Collect. Math. 69 (2018), no. 2, 297-314. https://doi.org/10.1007/s13348-017-0208-4
  2. A. Benedek, A.-P. Calderon, and R. Panzone, Convolution operators on Banach space valued functions, Proc. Nat. Acad. Sci. U.S.A. 48 (1962), 356-365. https://doi.org/10.1073/pnas.48.3.356
  3. J. Bergh and J. Lofstrom, Interpolation spaces. An introduction, Springer-Verlag, Berlin, 1976.
  4. F. Cacciafesta and P. D'Ancona, Endpoint estimates and global existence for the nonlinear Dirac equation with potential, J. Differential Equations 254 (2013), no. 5, 2233-2260. https://doi.org/10.1016/j.jde.2012.12.002
  5. F. Cacciafesta and R. Luca, Singular integrals with angular integrability, Proc. Amer. Math. Soc. 144 (2016), no. 8, 3413-3418. https://doi.org/10.1090/proc/13123
  6. L. C. Cheng, On Littlewood-Paley functions, Proc. Amer. Math. Soc. 135 (2007), no. 10, 3241-3247. https://doi.org/10.1090/S0002-9939-07-08917-4
  7. R. R. Coifman and R. Rochberg, Another characterization of BMO, Proc. Amer. Math. Soc. 79 (1980), no. 2, 249-254. https://doi.org/10.2307/2043245
  8. A. Cordoba, Singular integrals, maximal functions and Fourier restriction to spheres: the disk multiplier revisited, Adv. Math. 290 (2016), 208-235. https://doi.org/10.1016/j.aim.2015.11.039
  9. P. D'Ancona and R. Luca, On the regularity set and angular integrability for the Navier-Stokes equation, Arch. Ration. Mech. Anal. 221 (2016), no. 3, 1255-1284. https://doi.org/10.1007/s00205-016-0982-2
  10. J. Duoandikoetxea, Sharp Lp boundedness for a class of square functions, Rev. Mat. Complut. 26 (2013), no. 2, 535-548. https://doi.org/10.1007/s13163-012-0106-y
  11. J. Duoandikoetxea and O. Oruetxebarria, Weighted mixed-norm inequalities through extrapolation, Math. Nachr. 292 (2019), no. 7, 1482-1489. https://doi.org/10.1002/mana.201800311
  12. D. Fan and S. Sato, Remarks on Littlewood-Paley functions and singular integrals, J. Math. Soc. Japan 54 (2002), no. 3, 565-585. https://doi.org/10.2969/jmsj/1191593909
  13. S. Hofmann, Weighted norm inequalities and vector valued inequalities for certain rough operators, Indiana Univ. Math. J. 42 (1993), no. 1, 1-14. https://doi.org/10.1512/iumj.1993.42.42001
  14. F. Liu, A note of Littlewood-Paley functions on Triebel-Lizorkin spaces, Bull. Korean Math. Soc. 55 (2018), no. 2, 659-672. https://doi.org/10.4134/BKMS.b170212
  15. F. Liu and D. Fan, Weighted estimates for rough singular integrals with applications to angular integrability, Pacific J. Math. 301 (2019), no. 1, 267-295. https://doi.org/10.2140/pjm.2019.301.267
  16. F. Liu, R. Liu, and H. Wu, Weighted estimates for rough singular integrals with applications to angular integrability, II, Math. Inequal. Appl. 23 (2020), no. 1, 393-418. https://doi.org/10.7153/mia-2020-23-31
  17. F. Liu, H. Wu, and D. Zhang, Lp bounds for parametric Marcinkiewicz integrals with mixed homogeneity, Math. Inequal. Appl. 18 (2015), no. 2, 453-469. https://doi.org/10.7153/mia-18-34
  18. S. Machihara, M. Nakamura, K. Nakanishi, and T. Ozawa, Endpoint Strichartz estimates and global solutions for the nonlinear Dirac equation, J. Funct. Anal. 219 (2005), no. 1, 1-20. https://doi.org/10.1016/j.jfa.2004.07.005
  19. S. Sato, Remarks on square functions in the Littlewood-Paley theory, Bull. Austral. Math. Soc. 58 (1998), no. 2, 199-211. https://doi.org/10.1017/S0004972700032172
  20. S. Sato, Estimates for Littlewood-Paley functions and extrapolation, Integral Equations Operator Theory 62 (2008), no. 3, 429-440. https://doi.org/10.1007/s00020-008-1631-4
  21. E. M. Stein, On the functions of Littlewood-Paley, Lusin, and Marcinkiewicz, Trans. Amer. Math. Soc. 88 (1958), 430-466. https://doi.org/10.2307/1993226
  22. E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970.
  23. E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, 1993.
  24. T. Tao, Spherically averaged endpoint Strichartz estimates for the two-dimensional Schrodinger equation, Comm. Partial Differential Equations 25 (2000), no. 7-8, 1471-1485. https://doi.org/10.1080/03605300008821556
  25. C. Zhang and J. Chen, Boundedness of g-functions on Triebel-Lizorkin spaces, Taiwanese J. Math. 13 (2009), no. 3, 973-981. https://doi.org/10.11650/twjm/1500405452