References
- M. Ali Ozarslan, Unified Apostol-Bernoulli, Euler and Genocchi polynomials, Comput. Math. Appl. 62 (2011), no. 6, 2452-2462. https://doi.org/10.1016/j.camwa.2011.07.031
- A. Bayad and Y. Hamahata, Polylogarithms and poly-Bernoulli polynomials, Kyushu J. Math. 65 (2011), no. 1, 15-24. https://doi.org/10.2206/kyushujm.65.15
- L. Carlitz, Degenerate Stirling, Bernoulli and Eulerian numbers, Utilitas Math. 15 (1979), 51-88.
- L. Carlitz, Weighted Stirling numbers of the first and second kind. I, Fibonacci Quart. 18 (1980), no. 2, 147-162.
- Y. Hamahata, Poly-Euler polynomials and Arakawa-Kaneko type zeta functions, Funct. Approx. Comment. Math. 51 (2014), no. 1, 7-22. https://doi.org/10.7169/facm/2014.51.1.1
- K. W. Hwang, B. R. Nam, and N. S. Jung, A note on q-analogue of poly-Bernoulli numbers and polynomials, J. Appl. Math. Inform. 35 (2017), no. 5-6, 611-621. https://doi.org/10.14317/jami.2017.611
- K. Imatomi, M. Kaneko, and E. Takeda, Multi-poly-Bernoulli numbers and finite multiple zeta values, J. Integer Seq. 17 (2014), no. 4, Article 14.4.5, 12 pp.
- D. S. Kim and T. Kim, A note on poly-Bernoulli and higher-order poly-Bernoulli polynomials, Russ. J. Math. Phys. 22 (2015), no. 1, 26-33. https://doi.org/10.1134/S1061920815010057
- D. S. Kim and T. Kim, Some identities of Korobov-type polynomials associated with p-adic integrals on ℤp, Adv. Difference Equ. 2015 (2015), 282, 13 pp. https://doi.org/10.1186/s13662-015-0602-8
- D. S. Kim, T. Kim, H. I. Kwon, and T. Mansour, Korobov polynomials of the fifth kind and of the sixth kind, Kyungpook Math. J. 56 (2016), no. 2, 329-342. https://doi.org/10.5666/KMJ.2016.56.2.329
- T. Kim, Multiple zeta values, Di-zeta values and their applications, Lecture notes in number theory Graduate schools, Kyungnom Univ., 1998.
- T. Kim and D. S. Kim, Korobov polynomials of the third kind and of the fourth kind, Springer plus, 4 (2015), 608.
- T. Komatsu, J. L. Ramirez, and V. F. Sirvent, A (p, q)-analogue of poly-Euler polynomials and some related polynomials, arxiv:1604.2016.
- D. V. Kruchinin, Explicit formulas for Korobov polynomials, Proc. Jangjeon Math. Soc. 20 (2017), no. 1, 43-50.
- J. J. Seo and T. Kim, Degenerate Korobov polynomials, App. Math. Sci. 10 (2016), no. 4, 167-173. https://doi.org/10.1007/s40096-016-0191-z
- H. M. Srivastava, Some generalizations and basic (or q-) extensions of the Bernoulli, Euler and Genocchi polynomials, Appl. Math. Inf. Sci. 5 (2011), no. 3, 390-444.
- H. M. Srivastava and J. Choi, Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, Dordrecht, 2001.
- H. M. Srivastava, M. Garg, and S. Choudhary, A new generalization of the Bernoulli and related polynomials, Russ. J. Math. Phys. 17 (2010), no. 2, 251-261. https://doi.org/10.1134/S1061920810020093