DOI QR코드

DOI QR Code

Tsg101 Is Necessary for the Establishment and Maintenance of Mouse Retinal Pigment Epithelial Cell Polarity

  • Le, Dai (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Lim, Soyeon (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Min, Kwang Wook (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Park, Joon Woo (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Kim, Youjoung (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Ha, Taejeong (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Moon, Kyeong Hwan (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Wagner, Kay-Uwe (Department of Oncology, Wayne State University) ;
  • Kim, Jin Woo (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST))
  • Received : 2021.02.02
  • Accepted : 2021.03.02
  • Published : 2021.03.31

Abstract

The retinal pigment epithelium (RPE) forms a monolayer sheet separating the retina and choroid in vertebrate eyes. The polarized nature of RPE is maintained by distributing membrane proteins differentially along apico-basal axis. We found the distributions of these proteins differ in embryonic, post-natal, and mature mouse RPE, suggesting developmental regulation of protein trafficking. Thus, we deleted tumor susceptibility gene 101 (Tsg101), a key component of endosomal sorting complexes required for transport (ESCRT), in embryonic and mature RPE to determine whether ESCRT-mediated endocytic protein trafficking correlated with the establishment and maintenance of RPE polarity. Loss of Tsg101 severely disturbed the polarity of RPE, which forms irregular aggregates exhibiting non-polarized distribution of cell adhesion proteins and activation of epidermal growth factor receptor signaling. These findings suggest that ESCRT-mediated protein trafficking is essential for the development and maintenance of RPE cell polarity.

Keywords

References

  1. Adamson, E.D. and Rees, A.R. (1981). Epidermal growth factor receptors. Mol. Cell. Biochem. 34, 129-152. https://doi.org/10.1007/BF02359619
  2. Amerongen, H.M., Mack, J.A., Wilson, J.M., and Neutra, M.R. (1989). Membrane domains of intestinal epithelial cells: distribution of Na+, K+-ATPase and the membrane skeleton in adult rat intestine during fetal development and after epithelial isolation. J. Cell Biol. 109, 2129-2138. https://doi.org/10.1083/jcb.109.5.2129
  3. Babst, M. (2011). MVB vesicle formation: ESCRT-dependent, ESCRT-independent and everything in between. Curr. Opin. Cell Biol. 23, 452-457. https://doi.org/10.1016/j.ceb.2011.04.008
  4. Bakker, J., Spits, M., Neefjes, J., and Berlin, I. (2017). The EGFR odyssey - from activation to destruction in space and time. J. Cell Sci. 130, 4087-4096. https://doi.org/10.1242/jcs.209197
  5. Bonilha, V.L., Finnemann, S.C., and Rodriguez-Boulan, E. (1999). Ezrin promotes morphogenesis of apical microvilli and basal infoldings in retinal pigment epithelium. J. Cell Biol. 147, 1533-1548. https://doi.org/10.1083/jcb.147.7.1533
  6. Burke, J.M., Cao, F., Irving, P.E., and Skumatz, C.M.B. (1999). Expression of E-cadherin by human retinal pigment epithelium: delayed expression in vitro. Invest. Ophthalmol. Vis. Sci. 40, 2963-2970.
  7. Burke, J.M. and Hong, J. (2006). Fate of E-cadherin in early RPE cultures: transient accumulation of truncated peptides at nonjunctional sites. Invest. Ophthalmol. Vis. Sci. 47, 3635-3643. https://doi.org/10.1167/iovs.06-0104
  8. Cachafeiro, M., Bemelmans, A.P., Samardzija, M., Afanasieva, T., Pournaras, J.A., Grimm, C., Kostic, C., Philippe, S., Wenzel, A., and Arsenijevic, Y. (2013). Hyperactivation of retina by light in mice leads to photoreceptor cell death mediated by VEGF and retinal pigment epithelium permeability. Cell Death Dis. 4, e781. https://doi.org/10.1038/cddis.2013.303
  9. Clague, M.J., Liu, H., and Urbe, S. (2012). Governance of endocytic trafficking and signaling by reversible ubiquitylation. Dev. Cell 23, 457-467. https://doi.org/10.1016/j.devcel.2012.08.011
  10. Eden, E.R., White, I.J., and Futter, C.E. (2009). Down-regulation of epidermal growth factor receptor signalling within multivesicular bodies. Biochem. Soc. Trans. 37, 173-177. https://doi.org/10.1042/BST0370173
  11. Fang, D. and Setaluri, V. (1999). Role of microphthalmia transcription factor in regulation of melanocyte differentiation marker TRP-1. Biochem. Biophys. Res. Commun. 256, 657-663. https://doi.org/10.1006/bbrc.1999.0400
  12. Finnemann, S.C., Bonilha, V.L., Marmorstein, A.D., and Rodriguez-Boulan, E. (1997). Phagocytosis of rod outer segments by retinal pigment epithelial cells requires alpha(v)beta5 integrin for binding but not for internalization. Proc. Natl. Acad. Sci. U. S. A. 94, 12932-12937. https://doi.org/10.1073/pnas.94.24.12932
  13. Fujimura, N., Taketo, M.M., Mori, M., Korinek, V., and Kozmik, Z. (2009). Spatial and temporal regulation of Wnt/β-catenin signaling is essential for development of the retinal pigment epithelium. Dev. Biol. 334, 31-45. https://doi.org/10.1016/j.ydbio.2009.07.002
  14. Gallemore, R.P., Hughes, B.A., and Miller, S.S. (1997). Retinal pigment epithelial transport mechanisms and their contributions to the electroretinogram. Prog. Retin. Eye Res. 16, 509-566. https://doi.org/10.1016/S1350-9462(96)00037-7
  15. Grant, B.D. and Donaldson, J.G. (2009). Pathways and mechanisms of endocytic recycling. Nat. Rev. Mol. Cell Biol. 10, 597-608. https://doi.org/10.1038/nrm2755
  16. Gruenberg, J. and Stenmark, H. (2004). The biogenesis of multivesicular endosomes. Nat. Rev. Mol. Cell Biol. 5, 317-323. https://doi.org/10.1038/nrm1360
  17. Gundersen, D., Orlowski, J., and Rodriguez-Boulan, E. (1991). Apical polarity of Na,K-ATPase in retinal pigment epithelium is linked to a reversal of the ankyrin-fodrin submembrane cytoskeleton. J. Cell Biol. 112, 863-872. https://doi.org/10.1083/jcb.112.5.863
  18. Ha, T., Moon, K.H., Dai, L., Hatakeyama, J., Yoon, K., Park, H.S., Kong, Y.Y., Shimamura, K., and Kim, J.W. (2017). The retinal pigment epithelium is a Notch signaling niche in the mouse retina. Cell Rep. 19, 351-363. https://doi.org/10.1016/j.celrep.2017.03.040
  19. Herz, H.M., Chen, Z., Scherr, H., Lackey, M., Bolduc, C., and Bergmann, A. (2006). vps25 mosaics display non-autonomous cell survival and overgrowth, and autonomous apoptosis. Development 133, 1871-1880. https://doi.org/10.1242/dev.02356
  20. Hurley, J.H. (2010). The ESCRT complexes. Crit. Rev. Biochem. Mol. Biol. 45, 463-487. https://doi.org/10.3109/10409238.2010.502516
  21. Iacovelli, J., Zhao, C., Wolkow, N., Veldman, P., Gollomp, K., Ojha, P., Lukinova, N., King, A., Feiner, L., Esumi, N., et al. (2011). Generation of Cre transgenic mice with postnatal RPE-specific ocular expression. Invest. Ophthalmol. Vis. Sci. 52, 1378-1383. https://doi.org/10.1167/iovs.10-6347
  22. Imamura, Y., Noda, S., Hashizume, K., Shinoda, K., Yamaguchi, M., Uchiyama, S., Shimizu, T., Mizushima, Y., Shirasawa, T., and Tsubota, K. (2006). Drusen, choroidal neovascularization, and retinal pigment epithelium dysfunction in SOD1-deficient mice: a model of age-related macular degeneration. Proc. Natl. Acad. Sci. U. S. A. 103, 11282-11287. https://doi.org/10.1073/pnas.0602131103
  23. Kang, K.H., Lemke, G., and Kim, J.W. (2009). The PI3K-PTEN tug-of-war, oxidative stress and retinal degeneration. Trends Mol. Med. 15, 191-198. https://doi.org/10.1016/j.molmed.2009.03.005
  24. Kim, J.W., Kang, K.H., Burrola, P., Mak, T.W., and Lemke, G. (2008). Retinal degeneration triggered by inactivation of PTEN in the retinal pigment epithelium. Genes Dev. 22, 3147-3157. https://doi.org/10.1101/gad.1700108
  25. Kim, Y., Lim, S., Ha, T., Song, Y.H., Sohn, Y.I., Park, D.J., Paik, S.S., KimKaneyama, J.R., Song, M.R., Leung, A., et al. (2017). The LIM protein complex establishes a retinal circuitry of visual adaptation by regulating Pax6 alpha-enhancer activity. Elife 6, e21303. https://doi.org/10.7554/elife.21303
  26. Le Borgne, R. and Hoflack, B. (1998). Protein transport from the secretory to the endocytic pathway in mammalian cells. Biochim. Biophys. Acta 1404, 195-209. https://doi.org/10.1016/S0167-4889(98)00057-3
  27. Lehmann, G.L., Benedicto, I., Philp, N.J., and Rodriguez-Boulan, E. (2014). Plasma membrane protein polarity and trafficking in RPE cells: past, present and future. Exp. Eye Res. 126, 5-15. https://doi.org/10.1016/j.exer.2014.04.021
  28. Luzio, J.P., Piper, S.C., Bowers, K., Parkinson, M.D.J., Lehner, P.J., and Bright, N.A. (2009). ESCRT proteins and the regulation of endocytic delivery to lysosomes. Biochem. Soc. Trans. 37(Pt 1), 178-180. https://doi.org/10.1042/BST0370178
  29. Marmorstein, A.D. (2001). The polarity of the retinal pigment epithelium. Traffic 2, 867-872. https://doi.org/10.1034/j.1600-0854.2001.21202.x
  30. Martinez-Morales, J.R., Rodrigo, I., and Bovolenta, P. (2004). Eye development: a view from the retina pigmented epithelium. Bioessays 26, 766-777. https://doi.org/10.1002/bies.20064
  31. Mellman, I. and Nelson, W.J. (2008). Coordinated protein sorting, targeting and distribution in polarized cells. Nat. Rev. Mol. Cell Biol. 9, 833-845. https://doi.org/10.1038/nrm2525
  32. Moberg, K.H., Schelble, S., Burdick, S.K., and Hariharan, I.K. (2005). Mutations in erupted, the Drosophila ortholog of mammalian tumor susceptibility gene 101, elicit non-cell-autonomous overgrowth. Dev. Cell 9, 699-710. https://doi.org/10.1016/j.devcel.2005.09.018
  33. Mori, M., Gargowitsch, L., Bornert, J.M., Garnier, J.M., Mark, M., Chambon, P., and Metzger, D. (2012). Temporally controlled targeted somatic mutagenesis in mouse eye pigment epithelium. Genesis 50, 828-832. https://doi.org/10.1002/dvg.22044
  34. Mori, M., Metzger, D., Garnier, J.M., Chambon, P., and Mark, M. (2002). Site-specific somatic mutagenesis in the retinal pigment epithelium. Invest. Ophthalmol. Vis. Sci. 43, 1384-1388.
  35. Morita, E. (2012). Differential requirements of mammalian ESCRTs in multivesicular body formation, virus budding and cell division. FEBS J. 279, 1399-1406. https://doi.org/10.1111/j.1742-4658.2012.08534.x
  36. Prusky, G.T., Alam, N.M., Beekman, S., and Douglas, R.M. (2004). Rapid quantification of adult and developing mouse spatial vision using a virtual optomotor system. Invest. Ophthalmol. Vis. Sci. 45, 4611-4616. https://doi.org/10.1167/iovs.04-0541
  37. Rodriguez-Boulan, E. and Macara, I.G. (2014). Organization and execution of the epithelial polarity programme. Nat. Rev. Mol. Cell Biol. 15, 225-242. https://doi.org/10.1038/nrm3775
  38. Rowan, S. and Cepko, C.L. (2004). Genetic analysis of the homeodomain transcription factor Chx10 in the retina using a novel multifunctional BAC transgenic mouse reporter. Dev. Biol. 271, 388-402. https://doi.org/10.1016/j.ydbio.2004.03.039
  39. Saksena, S., Sun, J., Chu, T., and Emr, S.D. (2007). ESCRTing proteins in the endocytic pathway. Trends Biochem. Sci. 32, 561-573. https://doi.org/10.1016/j.tibs.2007.09.010
  40. Schmidt, O. and Teis, D. (2012). The ESCRT machinery. Curr. Biol. 22, R116-R120. https://doi.org/10.1016/j.cub.2012.01.028
  41. Shimura, M., Kakazu, Y., Oshima, Y., Tamai, M., and Akaike, N. (1999). Na+,K+-ATPase activity in cultured bovine retinal pigment epithelium. Invest. Ophthalmol. Vis. Sci. 40, 96-104.
  42. Shivas, J.M., Morrison, H.A., Bilder, D., and Skop, A.R. (2010). Polarity and endocytosis: reciprocal regulation. Trends Cell Biol. 20, 445-452. https://doi.org/10.1016/j.tcb.2010.04.003
  43. Simo, R., Villarroel, M., Corraliza, L., Hernandez, C., and Garcia-Ramirez, M. (2010). The retinal pigment epithelium: something more than a constituent of the blood-retinal barrier - implications for the pathogenesis of diabetic retinopathy. J. Biomed. Biotechnol. 2010, 190724.
  44. Soriano, P. (1999). Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 21, 70-71. https://doi.org/10.1038/5007
  45. Strauss, O. (2005). The retinal pigment epithelium in visual function. Physiol. Rev. 85, 845-881. https://doi.org/10.1152/physrev.00021.2004
  46. Sztul, E.S., Biemesderfer, D., Caplan, M.J., Kashgarian, M., and Boyer, J.L. (1987). Localization of Na+,K+-ATPase alpha-subunit to the sinusoidal and lateral but not canalicular membranes of rat hepatocytes. J. Cell Biol. 104, 1239-1248. https://doi.org/10.1083/jcb.104.5.1239
  47. Truschel, S.T., Simoes, S., Gangi Setty, S.R., Harper, D.C., Tenza, D., Thomas, P.C., Herman, K.E., Sackett, S.D., Cowan, D.C., Theos, A.C., et al. (2009). ESCRT-I function is required for Tyrp1 transport from early endosomes to the melanosome limiting membrane. Traffic 10, 1318-1336. https://doi.org/10.1111/j.1600-0854.2009.00955.x
  48. Vaccari, T. and Bilder, D. (2005). The Drosophila tumor suppressor vps25 prevents nonautonomous overproliferation by regulating notch trafficking. Dev. Cell 9, 687-698. https://doi.org/10.1016/j.devcel.2005.09.019
  49. Veleri, S., Lazar, C.H., Chang, B., Sieving, P.A., Banin, E., and Swaroop, A. (2015). Biology and therapy of inherited retinal degenerative disease: insights from mouse models. Dis. Model. Mech. 8, 109-129. https://doi.org/10.1242/dmm.017913
  50. Wagner, K.U., Krempler, A., Qi, Y., Park, K., Henry, M.D., Triplett, A.A., Riedlinger, G., Rucker III, E.B., and Hennighausen, L. (2003). Tsg101 is essential for cell growth, proliferation, and cell survival of embryonic and adult tissues. Mol. Cell. Biol. 23, 150-162. https://doi.org/10.1128/MCB.23.1.150-162.2003
  51. Weisz, O.A. and Rodriguez-Boulan, E. (2009). Apical trafficking in epithelial cells: signals, clusters and motors. J. Cell Sci. 122, 4253-4266. https://doi.org/10.1242/jcs.032615
  52. Williams, S.K., Greener, D.A., and Solenski, N.J. (1984). Endocytosis and exocytosis of protein in capillary endothelium. J. Cell. Physiol. 120, 157-162. https://doi.org/10.1002/jcp.1041200208
  53. Xu, L., Overbeek, P.A., and Reneker, L.W. (2002). Systematic analysis of E-, N- and P-cadherin expression in mouse eye development. Exp. Eye Res. 74, 753-760. https://doi.org/10.1006/exer.2002.1175

Cited by

  1. Retinoid Metabolism in the Degeneration of Pten-Deficient Mouse Retinal Pigment Epithelium vol.44, pp.8, 2021, https://doi.org/10.14348/molcells.2021.0138