DOI QR코드

DOI QR Code

Morphological Characterization of small, dumpy, and long Phenotypes in Caenorhabditis elegans

  • Cho, Joshua Young (Department of Life Science, School of Natural Sciences, Hanyang University) ;
  • Choi, Tae-Woo (Department of Life Science, School of Natural Sciences, Hanyang University) ;
  • Kim, Seung Hyun (Department of Life Science, School of Natural Sciences, Hanyang University) ;
  • Ahnn, Joohong (Department of Life Science, School of Natural Sciences, Hanyang University) ;
  • Lee, Sun-Kyung (Department of Life Science, School of Natural Sciences, Hanyang University)
  • Received : 2020.12.01
  • Accepted : 2021.02.22
  • Published : 2021.03.31

Abstract

The determinant factors of an organism's size during animal development have been explored from various angles but remain partially understood. In Caenorhabditis elegans, many genes affecting cuticle structure, cell growth, and proliferation have been identified to regulate the worm's overall morphology, including body size. While various mutations in those genes directly result in changes in the morphological phenotypes, there is still a need for established, clear, and distinct standards to determine the apparent abnormality in a worm's size and shape. In this study, we measured the body length, body width, terminal bulb length, and head size of mutant worms with reported Dumpy (Dpy), Small (Sma) or Long (Lon) phenotypes by plotting and comparing their respective ratios of various parameters. These results show that the Sma phenotypes are proportionally smaller overall with mild stoutness, and Dpy phenotypes are significantly stouter and have disproportionally small head size. This study provides a standard platform for determining morphological phenotypes designating and annotating mutants that exhibit body shape variations, defining the morphological phenotype of previously unexamined mutants.

Keywords

References

  1. Avery, L. and Shtonda, B.B. (2003). Food transport in the C. elegans pharynx. J. Exp. Biol. 206, 2441-2457. https://doi.org/10.1242/jeb.00433
  2. Bar, D.Z., Charar, C., Dorfman, J., Yadid, T., Tafforeau, L., Lafontaine, D.L.J., and Gruenbaum, Y. (2016). Cell size and fat content of dietary-restricted Caenorhabditis elegans are regulated by ATX-2, an mTOR repressor. Proc. Natl. Acad. Sci. U. S. A. 113, E4620-E4629. https://doi.org/10.1073/pnas.1512156113
  3. Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics 77, 71-94. https://doi.org/10.1093/genetics/77.1.71
  4. C. elegans Deletion Mutant Consortium. (2012). Large-scale screening for targeted knockouts in the Caenorhabditis elegans genome. G3 (Bethesda) 2, 1415-1425. https://doi.org/10.1534/g3.112.003830
  5. Chung, K.W., Kim, J.S., and Lee, K.S. (2020). A database of Caenorhabditis elegans locomotion and body posture phenotypes for the peripheral neuropathy model. Mol. Cells 43, 880-888. https://doi.org/10.14348/molcells.2020.0178
  6. Dineen, A. and Gaudet, J. (2014). TGF-β signaling can act from multiple tissues to regulate C. elegans body size. BMC Dev. Biol. 14, 43. https://doi.org/10.1186/s12861-014-0043-8
  7. Ferrier, A., Charron, A., Sadozai, Y., Switaj, L., Szutenbach, A., and Smith, P.A. (2011). Multiple phenotypes resulting from a mutagenesis screen for pharynx muscle mutations in Caenorhabditis elegans. PLoS One 6, e26594. https://doi.org/10.1371/journal.pone.0026594
  8. Gumienny, T.L. and Savage-Dunn, C. (2013). TGF-β signaling in C. elegans. In WormBook, The C. elegans Research Community, ed. (Pasadena, CA: WormBook), https://doi.org/10.1895/wormbook.1.22.2
  9. Harada, S., Hashizume, T., Nemoto, K., Shao, Z., Higashitani, N., Etheridge, T., Szewczyk, N.J., Fukui, K., Higashibata, A., and Higashitani, A. (2016). Fluid dynamics alter Caenorhabditis elegans body length via TGF-β/DBL-1 neuromuscular signaling. NPJ Microgravity 2, 16006. https://doi.org/10.1038/npjmgrav.2016.6
  10. Johnstone, I.L., Shafi, Y., and Barry, J.D. (1992). Molecular analysis of mutations in the Caenorhabditis elegans collagen gene dpy-7. EMBO J. 11, 3857-3863. https://doi.org/10.1002/j.1460-2075.1992.tb05478.x
  11. Kuhara, A., Inada, H., Katsura, I., and Mori, I. (2002). Negative regulation and gain control of sensory neurons by the C. elegans calcineurin TAX-6. Neuron 33, 751-763. https://doi.org/10.1016/S0896-6273(02)00607-4
  12. Lee, S.K., Li, W., Ryu, S.E., Rhim, T., and Ahnn, J. (2010). Vacuolar (H+)-ATPases in Caenorhabditis elegans: what can we learn about giant H+ pumps from tiny worms? Biochim. Biophys. Acta 1797, 1687-1695. https://doi.org/10.1016/j.bbabio.2010.07.004
  13. Levine, E. and Lee, K.S. (2020). Microfluidic approaches for Caenorhabditis elegans research. Anim. Cells Syst. (Seoul) 24, 311-320. https://doi.org/10.1080/19768354.2020.1837951
  14. Li, W., Bell, H.W., Ahnn, J., and Lee, S.K. (2015). Regulator of calcineurin (RCAN-1) regulates thermotaxis behavior in Caenorhabditis elegans. J. Mol. Biol. 427, 3457-3468. https://doi.org/10.1016/j.jmb.2015.07.017
  15. Lloyd, S. (1982). Least squares quantization in PCM. IEEE Trans. Inf. Theory 28, 129-137. https://doi.org/10.1109/TIT.1982.1056489
  16. Morck, C. and Pilon, M. (2006). C. elegans feeding defective mutants have shorter body lengths and increased autophagy. BMC Dev. Biol. 6, 39. https://doi.org/10.1186/1471-213X-6-39
  17. Nagashima, T., Ishiura, S., and Suo, S. (2017). Regulation of body size in Caenorhabditis elegans: effects of environmental factors and the nervous system. Int. J. Dev. Biol. 61, 367-374. https://doi.org/10.1387/ijdb.160352ss
  18. Page, A.P. and Johnstone, I.L. (2007). The cuticle. In Wormbook, The C. elegans Research Community, ed. (Pasadena, CA: WormBook), https://doi.org/10.1895/wormbook.1.138.1
  19. Qin, H., Rosenbaum, J.L., and Barr, M.M. (2001). An autosomal recessive polycystic kidney disease gene homolog is involved in intraflagellar transport in C. elegans ciliated sensory neurons. Curr. Biol. 11, 457-461. https://doi.org/10.1016/S0960-9822(01)00122-1
  20. Sammeta, N., Hardin, D.L., and McClintock, T.S. (2010). Uncx regulates proliferation of neural progenitor cells and neuronal survival in the olfactory epithelium. Mol. Cell. Neurosci. 45, 398-407. https://doi.org/10.1016/j.mcn.2010.07.013
  21. Savage-Dunn, C., Maduzia, L.L., Zimmerman, C.M., Roberts, A.F., Cohen, S., Tokarz, R., and Padgett, R.W. (2003). Genetic screen for small body size mutants in C. elegans reveals many TGFbeta pathway components. Genesis 35, 239-247. https://doi.org/10.1002/gene.10184
  22. Sewell, W., Sparrow, D.B., Smith, A.J., Gonzalez, D.M., Rappaport, E.F., Dunwoodie, S.L., and Kusumi, K. (2009). Cyclical expression of the Notch/Wnt regulator Nrarp requires modulation by Dll3 in somitogenesis. Dev. Biol. 329, 400-409. https://doi.org/10.1016/j.ydbio.2009.02.023
  23. Shephard, F., Adenle, A.A., Jacobson, L.A., and Szewczyk, N.J. (2011). Identification and functional clustering of genes regulating muscle protein degradation from amongst the known C. elegans muscle mutants. PLoS One 6, e24686. https://doi.org/10.1371/journal.pone.0024686
  24. Skuntz, S., Mankoo, B., Nguyen, M.T., Hustert, E., Nakayama, A., Tournier-Lasserve, E., Wright, C.V., Pachnis, V., Bharti, K., and Arnheiter, H. (2009). Lack of the mesodermal homeodomain protein MEOX1 disrupts sclerotome polarity and leads to a remodeling of the cranio-cervical joints of the axial skeleton. Dev. Biol. 332, 383-395. https://doi.org/10.1016/j.ydbio.2009.06.006
  25. Thein, M.C., McCormack, G., Winter, A.D., Johnstone, I.L., Shoemaker, C.B., and Page, A.P. (2003). Caenorhabditis elegans exoskeleton collagen COL-19: an adult-specific marker for collagen modification and assembly, and the analysis of organismal morphology. Dev. Dyn. 226, 523-539. https://doi.org/10.1002/dvdy.10259
  26. Tuck, S. (2014). The control of cell growth and body size in Caenorhabditis elegans. Exp. Cell Res. 321, 71-76. https://doi.org/10.1016/j.yexcr.2013.11.007
  27. Uppaluri, S., Weber, S.C., and Brangwynne, C.P. (2016). Hierarchical size scaling during multicellular growth and development. Cell Rep. 17, 345-352. https://doi.org/10.1016/j.celrep.2016.09.007
  28. Yemini, E., Jucikas, T., Grundy, L.J., Brown, A.E.X., and Schafer, W.R. (2013). A database of Caenorhabditis elegans behavioral phenotypes. Nat. Methods 10, 877-879. https://doi.org/10.1038/nmeth.2560