DOI QR코드

DOI QR Code

Calculations of the Single-Scattering Properties of Non-Spherical Ice Crystals: Toward Physically Consistent Cloud Microphysics and Radiation

비구형 빙정의 단일산란 특성 계산: 물리적으로 일관된 구름 미세물리와 복사를 향하여

  • Um, Junshik (Department of Atmospheric Sciences, Pusan National University) ;
  • Jang, Seonghyeon (BK21 School of Earth and Environmental Systems, Division of Earth Environmental System, Department of Atmospheric Sciences, Pusan National University) ;
  • Kim, Jeonggyu (BK21 School of Earth and Environmental Systems, Division of Earth Environmental System, Department of Atmospheric Sciences, Pusan National University) ;
  • Park, Sungmin (BK21 School of Earth and Environmental Systems, Division of Earth Environmental System, Department of Atmospheric Sciences, Pusan National University) ;
  • Jung, Heejung (BK21 School of Earth and Environmental Systems, Division of Earth Environmental System, Department of Atmospheric Sciences, Pusan National University) ;
  • Han, Suji (BK21 School of Earth and Environmental Systems, Division of Earth Environmental System, Department of Atmospheric Sciences, Pusan National University) ;
  • Lee, Yunseo (Department of Atmospheric Sciences, Pusan National University)
  • 엄준식 (부산대학교 대기환경과학과) ;
  • 장성현 (부산대학교 BK21 지구환경시스템 교육연구단, 지구환경시스템학부 대기환경과학과) ;
  • 김정규 (부산대학교 BK21 지구환경시스템 교육연구단, 지구환경시스템학부 대기환경과학과) ;
  • 박성민 (부산대학교 BK21 지구환경시스템 교육연구단, 지구환경시스템학부 대기환경과학과) ;
  • 정희정 (부산대학교 BK21 지구환경시스템 교육연구단, 지구환경시스템학부 대기환경과학과) ;
  • 한수지 (부산대학교 BK21 지구환경시스템 교육연구단, 지구환경시스템학부 대기환경과학과) ;
  • 이윤서 (부산대학교 대기환경과학과)
  • Received : 2021.02.17
  • Accepted : 2021.03.12
  • Published : 2021.03.31

Abstract

The impacts of ice clouds on the energy budget of the Earth and their representation in climate models have been identified as important and unsolved problems. Ice clouds consist almost exclusively of non-spherical ice crystals with various shapes and sizes. To determine the influences of ice clouds on solar and infrared radiation as required for remote sensing retrievals and numerical models, knowledge of scattering and microphysical properties of ice crystals is required. A conventional method for representing the radiative properties of ice clouds in satellite retrieval algorithms and numerical models is to combine measured microphysical properties of ice crystals from field campaigns and pre-calculated single-scattering libraries of different shapes and sizes of ice crystals, which depend heavily on microphysical and scattering properties of ice crystals. However, large discrepancies between theoretical calculations and observations of the radiative properties of ice clouds have been reported. Electron microscopy images of ice crystals grown in laboratories and captured by balloons show varying degrees of complex morphologies in sub-micron (e.g., surface roughness) and super-micron (e.g., inhomogeneous internal and external structures) scales that may cause these discrepancies. In this study, the current idealized models representing morphologies of ice crystals and the corresponding numerical methods (e.g., geometric optics, discrete dipole approximation, T-matrix, etc.) to calculate the single-scattering properties of ice crystals are reviewed. Current problems and difficulties in the calculations of the single-scattering properties of atmospheric ice crystals are addressed in terms of cloud microphysics. Future directions to develop physically consistent ice-crystal models are also discussed.

Keywords

References

  1. Auriol, F., J.-F. Gayet, G. Febvre, O. Jourdan, L. Labonnote, and G. Brogniez, 2001: In situ observation of cirrus scattering phase functions with 22° and 46° halos: cloud field study on 19 February 1998. J. Atmos. Sci., 58, 3376-3390. https://doi.org/10.1175/1520-0469(2001)058<3376:ISOOCS>2.0.CO;2
  2. Bailey, M., and J. Hallett, 2004: Growth rates and habits of ice crystals between -20° and -70℃. J. Atmos. Sci., 61, 514-544. https://doi.org/10.1175/1520-0469(2004)061<0514:GRAHOI>2.0.CO;2
  3. Baran, A. J., 2009: A review of the light scattering properties of cirrus. J. Quant. Spectrosc. Radiat. Transfer, 110, 1239-1260. https://doi.org/10.1016/j.jqsrt.2009.02.026
  4. Baran, A. J., 2012: From the single-scattering properties of ice crystals to climate prediction: A way forward. Atmos. Res., 112, 45-69, doi:10.1016/j.atmosres.2012.04.010.
  5. Baran, A. J., and L.-C. Labonnote, 2007: A self-consistent scattering model for cirrus. I: The solar region. Q. J. R. Meteorol. Soc., 133, 1899-1912. https://doi.org/10.1002/qj.164
  6. Baran, A. J., P. D. Watts, and P. N. Francis, 1999: Testing the coherence of cirrus microphysical and bulk properties retrieved from dual-viewing multispectral satellite radiance measurements. J. Geophys. Res., 104, 31673-31683. https://doi.org/10.1029/1999JD900842
  7. Baran, A. J., P. N. Francis, L.-C. Labonnote, and M. Doutriux-Boucher, 2001: A scattering phase function for ice cloud: Tests of applicability using aircraft and satellite multi-angle multi-wavelength radiance measurements of cirrus. Q. J. R. Meteorol. Soc., 127, 2395-2416. https://doi.org/10.1002/qj.49712757711
  8. Baran, A. J., V. N. Shcherbakov, B. A. Barker, J. F. Gayet, and R. P. Lawson, 2005: On the scattering phase-function of non-symmetric ice-crystals. Q. J. R. Meteorol. Soc., 131, 2609-2616. https://doi.org/10.1256/qj.04.137
  9. Baran, A. J., R. Cotton, K. Furtado, S. Hayemann, L.-C. Labonnote, F. Marenco, A. Smith, and J.-C. Thelen, 2014: A self-consistent scattering model for cirrus. II: The high and low frequencies. Q. J. R. Meteorol. Soc., 140, 1039-1057, doi:10.1002/qj.2193.
  10. Baum, B. A., P. Yang, S. Nasiri, A. K. Heidinger, A. Heymsfield, and J. Li, 2007: Bulk scattering properties for the remote sensing of ice clouds. Part III: High-resolution spectral models from 100 to 3250 cm-1. J. Appl. Meteorol. Clim., 46, 423-434. https://doi.org/10.1175/JAM2473.1
  11. Baum, B. A., P. Yang, Y. X. Hu, and Q. Feng, 2010: The impact of ice particle roughness on the scattering phase matrix. J. Quant. Spectrosc. Radiat. Transfer, 111, 2534-2549, doi:10.1016/j.jqsrt.2010.07.008.
  12. Baum, B. A., P. Yang, A. J. Heymsfield, C. G. Schmitt, Y. Xie, A. Bansemer, Y.-X. Hu, and Z. Zhang, 2011: Improvements in shortwave bulk scattering and absorption models for the remote sensing of ice clouds. J. Appl. Meteorol. Clim, 50, 1037-1056, doi:10.1175/2010JAMC2608.1.
  13. Baumgardner, D., and Coauthors, 2017: Cloud ice properties: In situ measurement challenges. Meteor. Mon., 58, 9.1-9.23, doi:10.1175/AMSMONOGRAPHS-D-16-0011.1.
  14. Bi, L., and P. Yang, 2014: Accurate simulation of the optical properties of atmospheric ice crystals with the invariant imbedding T-matrix method. J. Quant. Spectrosc. Radiat. Transfer, 138, 17-35, doi:10.1016/j.jqsrt.2014.01.013.
  15. Bi, L., P. Yang, G. W. Kattawar, Y. Hu, and B. A. Baum, 2011: Scattering and absorption of light by ice particles: Solution by a new physical-geometric optics hybrid method. J. Quant. Spectrosc. Radiat. Transfer, 112, 1492-1508, doi:10.1016/j.jqsrt.2011.02.015.
  16. Bi, L., P. Yang, G. W. Kattawar, and M. I. Mishchenko, 2013a: Efficient implementation of the invariant imbedding T-matrix method and the separation of variables method applied to large nonspherical inhomogeneous particles. J. Quant. Spectrosc. Radiat. Transfer, 116, 169-183. https://doi.org/10.1016/j.jqsrt.2012.11.014
  17. Bi, L., P. Yang, G. W. Kattawar, and M. I. Mishchenko, 2013b: A numerical combination of extended boundary condition method and invariant imbedding method applied to light scattering by large spheroids and cylinders. J. Quant. Spectrosc. Radiat. Transfer, 123, 17-22, doi:10.1016/j.jqsrt.2012.11.033.
  18. Bohren, C. F., and D. R. Huffman, 1983: Absorption and scattering of light by small particles. Wiley, 544 pp.
  19. Cai, Q., and K.-N. Liou, 1982: Polarized light scattering by hexagonal ice crystals: theory. Appl. Opt., 21, 3569-3580. https://doi.org/10.1364/AO.21.003569
  20. Chen, G., P. Yang, and G. W. Kattawar, 2008: Application of the pseudospectral time-domain method to the scattering of light by nonspherical particles. J. Opt. Soc. Am. A, 25, 785-790.
  21. Chylek, P., and J. D. Klett, 1991: Extinction cross sections of nonspherical particles in the anomalous diffraction approximation. J. Opt. Soc. Am. A, 8, 274-281. https://doi.org/10.1364/josaa.8.000274
  22. C.-Labonnote, L., G. Brogniez, J.-C. Buriez, M. Doutriaux-Boucher, J.-F. Gayet, and A. Macke, 2001: Polarized light scattering by inhomogeneous hexagonal monocrystals: Validation with ADEOS-POLDER measurements. J. Geophys. Res. Atmos., 106, 12139-12153. https://doi.org/10.1029/2000JD900642
  23. Cole, B. H., P. Yang, B. A. Baum, J. Riedi, and L. C.-Labonnote, 2014: Ice particle habit and surface roughness derived from PARASOL polarization measurements. Atmos. Chem. Phys., 14, 3739-3750, doi:10.5194/acp-14-3739-2014.
  24. Collier, C. T., E. Hesse, L. Taylor, Z. Ulanowski, A. Penttila, and T. Nousiainen, 2016: Effects of surface roughness with two scales on light scattering by hexagonal ice crystals large compared to the wavelength: DDA results. J. Quant. Spectrosc. Radiat. Transfer, 182, 225-239, doi:10.1016/j.jqsrt.2016.06.007.
  25. DeVoe, H., 1964: Optical properties of molecular aggregates. I. Classical model of electronic absorption and refraction. J. Chem. Phys., 41, 393-400. https://doi.org/10.1063/1.1725879
  26. Doicu, A., and M. I. Mishchenko, 2018: Overview of methods for deriving the radiative transfer theory from the Maxwell equations. I: Approach based on the far-field Foldy equations. J. Quant. Spectrosc. Radiat. Transfer, 220, 123-139, doi:10.1016/j.jqsrt.2018.09.004.
  27. Donald, J. M., A. Golden, and S. G. Jennings, 2009: OpenDDA: a novel high-performance computational framework for the discrete dipole approximation. Int. J. High Perform. C., 23, 42-61. https://doi.org/10.1177/1094342008097914
  28. Draine, B. T., and P. J. Flatau, 1994: Discrete-dipole approximation for scattering calculations. J. Opt. Soc. Am. A, 11, 1491-1499. https://doi.org/10.1364/JOSAA.11.001491
  29. Edwards, J. M., S. Havemann, J.-C. Thelen, and A. J. Baran, 2007: A new parametrization for the radiative properties of ice crystals: Comparison with existing schemes and impact in a GCM. Atmos. Res., 83, 19-35. https://doi.org/10.1016/j.atmosres.2006.03.002
  30. Febvre, G., and Coauthors, 2009: On optical and microphysical characteristics of contrails and cirrus. J. Geophys. Res. Atmos., 114, D02204. https://doi.org/10.1029/2009JD012375
  31. Foot, J. S., 1988: Some observations of the optical properties of clouds. II: Cirrus. Q. J. R. Meteorol. Soc., 114, 145-164. https://doi.org/10.1002/qj.49711447908
  32. Francis, P. N., J. S. Foot, and A. J. Baran, 1999: Aircraft measurements of the solar and infrared radiative properties of cirrus and their dependence on ice crystal shape. J. Geophys. Res. Atmos., 104, 31685-31695. https://doi.org/10.1029/1999JD900438
  33. Frigo, M., and S. G. Johnson, 2005: The design and implementation of FFTW3. Proc. IEEE, 93, 216-231. https://doi.org/10.1109/JPROC.2004.840301
  34. Fu, Q., 1996: An accurate parameterization of the solar radiative properties of cirrus clouds for climate models. J. Climate, 9, 2058-2082. https://doi.org/10.1175/1520-0442(1996)009<2058:AAPOTS>2.0.CO;2
  35. Garrett, T. J., 2008: Observational quantification of the optical properties of cirrus cloud. In A. A. Kokhanovsky, Ed., Light Scattering Reviews 3. Springer, 3-26.
  36. Garrett, T. J., P. V. Hobbs, and H. Gerber, 2001: Shortwave, single-scattering properties of arctic ice clouds. J. Geophys. Res., 106, 15155-15172. https://doi.org/10.1029/2000JD900195
  37. Gayet, J.-F., V. Shcherbakov, H. Mannstein, A. Minikin, U. Schumann, J. Strom, A. Petzold, J. Ovarlez, and F. Immler, 2006: Microphysical and optical properties of midlatitude cirrus clouds observed in the southern hemisphere during INCA. Q. J. R. Meteorol. Soc., 132, 2719-2748. https://doi.org/10.1256/qj.05.162
  38. Gayet, J.-F., G. Mioche, V. Shcherbakov, C. Gourbeyre, R. Busen, and A. Minikin, 2011: Optical properties of pristine ice crystals in mid-latitude cirrus clouds: a case study during CIRCLE-2 experiment. Atmos. Chem. Phys., 11, 2537-2544, doi:10.5194/acp-11-2537-2011.
  39. Geogdzhayev, I., and B. Van Diedenhoven, 2016: The effect of roughness model on scattering properties of ice crystals. J. Quant. Spectrosc. Radiat. Transfer, 178, 134-141, doi:10.1016/j.jqsrt.2016.03.001.
  40. Gerber, H., Y. Takano, T. J. Garrett, and P. V. Hobbs, 2000: Nephelometer measurements of the asymmetry parameter, volume extinction coefficient, and backscatter ratio in Arctic clouds. J. Atmos. Sci., 57, 3021-3034. https://doi.org/10.1175/1520-0469(2000)057<3021:NMOTAP>2.0.CO;2
  41. Gerber, H., T. J. Garrett, A. J. Heymsfield, M. Poellot, and C. Twohy, 2004: Nephelometer measurements in Florida thunderstorms. Presentation, 14th Int. Conf. on Clouds and Precipitation, Bologna, Italy, International Union of Geodesy and Geophysics, 1092-1094.
  42. Gu, Y., K. N. Liou, S. C. Ou, and R. Fovell, 2011: Cirrus cloud simulations using WRF with improved radiation parameterization and increased vertical resolution. J. Geophys. Res. Atmos., 116, D06119, doi:10.1029/2010JD014574.
  43. Hess, M., R. B. A. Koelemeijer, and P. Stammes, 1998: Scattering matrices of imperfect hexagonal ice crystals. J. Quant. Spectrosc. Radiat. Transfer, 60, 301-308. https://doi.org/10.1016/S0022-4073(98)00007-7
  44. Hioki, S., P. Yang, B. A. Baum, S. Platnick, K. G. Meyer, M. D. King, and J. Riedi, 2016: Degree of ice particle surface roughness inferred from polarimetric observations. Atmos. Chem. Phys., 16, 7545-7558, doi:10.5194/acp-16-7545-2016.
  45. Hogan, R. J., and C. D. Westbrook, 2014: Equation for the microwave backscatter cross section of aggregate snowflakes using the self-similar Rayleigh-Gans approximation. J. Atmos. Sci., 71, 3292-3301, doi:10.1175/JAS-D-13-0347.1.
  46. Hogan, R. J., L. Tian, P. R. A. Brown, C. D. Westbrook, A. J. Heymsfield, and J. D. Eastment, 2012: Radar scattering from ice aggregates using the horizontally aligned oblate spheroid approximation. J. Appl. Meteorol. Clim., 51, 655-671, doi:10.1175/JAMC-D-11-074.1.
  47. Hogan, R. J., R. Honeyager, J. Tyynela, and S. Kneifel, 2017: Calculating the millimetre-wave scattering phase function of snowflakes using the self-similar Rayleigh-Gans Approximation. Q. J. R. Meteorol. Soc., 143, 834-844, doi:10.1002/qj.2968.
  48. Hong, G., P. Yang, B. A. Baum, A. J. Heymsfield, and K.-M. Xu, 2009: Parameterization of shortwave and longwave radiative properties of ice clouds for use in climate models. J. Climate, 22, 6287-6312. https://doi.org/10.1175/2009JCLI2844.1
  49. Hu, S., L. Liu, T. Gao, and Q. Zeng, 2019: Design and validation of the invariant imbedded T-Matrix scattering model for atmospheric particles with arbitrary shapes. Appl. Sci., 9, 4423, doi:10.3390/app9204423.
  50. Iaquinta, J., H. Isaka, and P. Personne, 1995: Scattering phase function of bullet rosette ice crystals. J. Atmos. Sci., 52, 1401-1413. https://doi.org/10.1175/1520-0469(1995)052<1401:SPFOBR>2.0.CO;2
  51. Ishimoto, H., K. Masuda, Y. Mano, N. Orikasa, and A. Uchiyama, 2012: Irregularly shaped ice aggregates in optical modeling of convectively generated ice clouds. J. Quant. Spectrosc. Radiat. Transfer, 113, 632-643, doi:10.1016/j.jqsrt.2012.01.017.
  52. Jackson, J. D., 1998: Classical electrodynamics, 3rd ed.. Wiley, 832 pp.
  53. Johnson, B. R., 1988: Invariant imbedding T matrix approach to electromagnetic scattering. Appl. Opt., 27, 4861-4873. https://doi.org/10.1364/AO.27.004861
  54. Jarvinen, E., and Coauthors, 2018: Additional global climate cooling by clouds due to ice crystal complexity. Atmos. Chem. Phys., 18, 15767-15781, doi:10.5194/acp-18-15767-2018.
  55. Jourdan, O., G. Mioche, T. J. Garrett, A. Schwarzenbock, J. Vidot, Y. Xie, V. Shcherbakov, P. Yang, and J.-F. Gayet, 2010: Coupling of the microphysical and optical properties of an Arctic nimbostratus cloud during the ASTAR 2004 experiment: Implications for light-scattering modeling. J. Geophys. Res. Atmos., 115, D23206, doi:10.1029/2010JD014016.
  56. Kahnert, M., 2003: Numerical methods in electromagnetic scattering theory. J. Quant. Spectrosc. Radiat. Transfer, 79, 775-824. https://doi.org/10.1016/S0022-4073(02)00321-7
  57. Kahnert, M., 2010: Electromagnetic scattering by nonspherical particles: recent advances. J. Quant. Spectrosc. Radiat. Transfer, 111, 1788-1790, doi:10.1016/j.jqsrt.2009.12.007.
  58. Kahnert, M., 2013: The T-matrix code Tsym for homogeneous dielectric particles with finite symmetries. J. Quant. Spectrosc. Radiat. Transfer, 123, 62-78, doi:10.1016/j.jqsrt.2012.12.019.
  59. Kahnert, M., 2016: Numerical solutions of the macroscopic Maxwell equations for scattering by non-spherical particles: a tutorial review. J. Quant. Spectrosc. Radiat. Transfer, 178, 22-37. https://doi.org/10.1016/j.jqsrt.2015.10.029
  60. Kahnert, M., and A. Devasthale, 2011: Black carbon fractal morphology and short-wave radiative impact: a modelling study. Atmos. Chem. Phys., 11, 11745-11759, doi:10.5194/acp-11-11745-2011.
  61. Knap, W. H., M. Hess, P. Stammes, R. B. A. Koelemeijer, and P. D. Watts, 1999: Cirrus optical thickness and crystal size retrieval from ATSR-2 data using phase functions of imperfect hexagonal ice crystals. J. Geophys. Res. Atmos., 104, 31721-31730. https://doi.org/10.1029/1999JD900267
  62. Korolev, A. V., G. A. Isaac, and J. Hallett, 1999: Ice particle habits in Arctic clouds. Geophys. Res. Lett., 26, 1299-1302. https://doi.org/10.1029/1999GL900232
  63. Lawson, R. P., and Coauthors, 2019: A review of ice particle shapes in cirrus formed in situ and in anvils. J. Geophys. Res. Atmos., 124, 10049-10090, doi:10.1029/2018JD030122.
  64. Leinonen, J., S. Kneifel, and R. J. Hogan, 2017: Evaluation of the Rayleigh-Gans approximation for microwave scattering by rimed snowflakes. Q. J. R. Meteorol. Soc., 144, 77-88, doi:10.1002/qj.3093.
  65. Liou, K. N., 2002: An Introduction to Atmospheric Radiation. Academic Press, 583 pp.
  66. Liou, K. N., and P. Yang, 2016: Light Scattering by Ice Crystals: Fundamentals and Applications. Cambridge University Press, 460 pp, doi:10.1017/CBO9781139030052.
  67. Liou, K. N., Y. Takano, C. He, P. Yang, L. R. Leung, Y. Gu, and W. L. Lee, 2014: Stochastic parameterization for light absorption by internally mixed BC/dust in snow grains for application to climate models. J. Geophys. Res. Atmos., 119, 7616-7632, doi:10.1002/2014JD021665.
  68. Liu, C., R. L. Panetta, and P. Yang, 2012: Application of the pseudo-spectral time domain method to compute particle single-scattering properties for size parameters up to 200. J. Quant. Spectrosc. Radiat. Transfer, 113, 1728-1740, doi:10.1016/j.jqsrt.2012.04.021.
  69. Liu, C., R. L. Panetta, and P. Yang, 2013: The effects of surface roughness on the scattering properties of hexagonal columns with sizes from the Rayleigh to the geometric optics regimes. J. Quant. Spectrosc. Radiat. Transfer, 129, 169-185, doi:10.1016/j.jqsrt.2013.06.011.
  70. Liu, C., P. Yang, P. Minnis, N. Loeb, S. Kato, A. Heymsfield, and C. Schmitt, 2014: A two-habit model for the microphysical and optical properties of ice clouds. Atmos. Chem. Phys., 14, 13719-13737, doi:10.5194/acp-14-13719-2014.
  71. Liu, C., J. Li, Y. Yin, B. Zhu, and Q. Feng, 2017: Optical properties of black carbon aggregates with non-absorptive coating. J. Quant. Spectrosc. Radiat. Transfer, 187, 443-452, doi:10.1016/j.jqsrt.2016.10.023.
  72. Liu, C., X. Xu, Y. Yin, M. Schnaiter, and Y. L. Yung, 2019: Black carbon aggregates: A database for optical properties. J. Quant. Spectrosc. Radiat. Transfer, 222, 170-179, doi:10.1016/j.jqsrt.2018.10.021.
  73. Liu, L., and M. I. Mishchenko, 2007: Scattering and radiative properties of complex soot and soot-containing aggregate particles. J. Quant. Spectrosc. Radiat. Transfer, 106, 262-273. https://doi.org/10.1016/j.jqsrt.2007.01.020
  74. Liu, L., M. I. Mishchenko, and W. P. Arnott, 2008: A study of radiative properties of fractal soot aggregates using the superposition T-matrix method. J. Quant. Spectrosc. Radiat. Transfer, 109, 2656-2663. https://doi.org/10.1016/j.jqsrt.2008.05.001
  75. Liu, Q. H., 1998: The PSTD algorithm: A time-domain method requiring only two cells per wavelength. Microw. Opt. Technol. Lett., 15, 158-165. https://doi.org/10.1002/(SICI)1098-2760(19970620)15:3<158::AID-MOP11>3.0.CO;2-3
  76. Macke, A., 1993: Scattering of light by polyhedral ice crystals. Appl. Opt., 32, 2780-2788. https://doi.org/10.1364/AO.32.002780
  77. Macke, A., J. Mueller, and E. Raschke, 1996a: Single scattering properties of atmospheric ice crystals. J. Atmos. Sci., 53, 2813-2825. https://doi.org/10.1175/1520-0469(1996)053<2813:SSPOAI>2.0.CO;2
  78. Macke, A., M. I. Mishchenko, and B. Cairns, 1996b: The influence of inclusions on light scattering by large ice particles. J. Geophys. Res. Atmos., 101, 23311-23316. https://doi.org/10.1029/96JD02364
  79. Mackowski, D. W., 2014: A general superposition solution for electromagnetic scattering by multiple spherical domains of optically active media. J. Quant. Spectrosc. Radiat. Transfer, 133, 264-270, doi:10.1016/j.jqsrt.2013.08.012.
  80. Mackowski, D. W., and M. I. Mishchenko, 1996: Calculation of the T matrix and the scattering matrix for ensembles of spheres. J. Opt. Soc. Am. A, 13, 2266-2278. https://doi.org/10.1364/JOSAA.13.002266
  81. Mackowski, D. W., and M. I. Mishchenko, 2011: A multiple sphere T-matrix Fortran code for use on parallel computer clusters. J. Quant. Spectrosc. Radiat. Transfer, 112, 2182-2192, doi:10.1016/j.jqsrt.2011.02.019.
  82. Magee, N. B., A. Miller, M. Amaral, and A. Cumiskey, 2014: Mesoscopic surface roughness of ice crystals pervasive across a wide range of ice crystal conditions. Atmos. Chem. Phys., 14, 12357-12371, doi:10.5194/acp-14-12357-2014.
  83. Magee, N. B., and Coauthors, 2021: Captured cirrus ice particles in high definition. Atmos. Chem. Phys. Discuss., in review, 2020, doi:10.5194/acp-2020-486.
  84. Markkanen, J., and A. J. Yuffa, 2017: Fast superposition Tmatrix solution for clusters with arbitrarily-shaped constituent particles. J. Quant. Spectrosc. Radiat. Transfer, 189, 181-188, doi:10.1016/j.jqsrt.2016.11.004.
  85. McFarquhar, G. M., A. J. Heymsfield, A. Macke, J. Iaquinta, and S. M. Aulenbach, 1999: Use of observed ice crystal sizes and shapes to calculate mean-scattering properties and multispectral radiances: CEPEX April 4, 1993, case study. J. Geophys. Res. Atmos., 104, 31763-31779. https://doi.org/10.1029/1999JD900802
  86. McFarquhar, G. M., A. J. Heymsfield, J. Spinhirne, and B. Hart, 2000: Thin and subvisual tropopause tropical cirrus: Observations and radiative impacts. J. Atmos. Sci., 57, 1841-1853. https://doi.org/10.1175/1520-0469(2000)057<1841:TASTTC>2.0.CO;2
  87. McFarquhar, G. M., P. Yang, A. Macke, and A. J. Baran, 2002: A new parameterization of single scattering solar radiative properties for tropical anvils using observed ice crystal size and shape distributions. J. Atmos. Sci., 59, 2458-2478. https://doi.org/10.1175/1520-0469(2002)059<2458:ANPOSS>2.0.CO;2
  88. Mandel, L., and E. Wolf, 1995: Optical coherence and quantum optics, Cambridge university press, 1194 pp.
  89. Mitchell, D. L., and W. P. Arnott, 1994: A model predicting the evolution of ice particle size spectra and radiative properties of cirrus clouds. Part II: Dependence of absorption and extinction on ice crystal morphology. J. Atmos. Sci., 51, 817-832. https://doi.org/10.1175/1520-0469(1994)051<0817:AMPTEO>2.0.CO;2
  90. Mishchenko, M. I., 2003: Radiative transfer theory: From Maxwell's equations to practical applications. In B. A. van Tiggelen et al. Eds., Wave Scattering in Complex Media: From Theory to Applications, Springer, 366-414.
  91. Mishchenko, M. I., 2006: Maxwell's equations, radiative transfer, and coherent backscattering: A general perspective. J. Quant. Spectrosc. Radiat. Transfer, 101, 540-555. https://doi.org/10.1016/j.jqsrt.2006.02.065
  92. Mishchenko, M. I., 2009: Electromagnetic scattering by nonspherical particles: A tutorial review. J. Quant. Spectrosc. Radiat. Transfer, 110, 808-832. https://doi.org/10.1016/j.jqsrt.2008.12.005
  93. Mishchenko, M. I., 2020: Comprehensive thematic T-matrix reference database: a 2017-2019 update. J. Quant. Spectrosc. Radiat. Transfer, 242, 106692, doi:10.1016/j.jqsrt.2019.106692.
  94. Mishchenko, M. I., and A. Macke, 1998: Incorporation of physical optics effects and computation of the Legendre expansion for ray-tracing phase functions involving δ-function transmission. J. Geophys. Res. Atmos., 103, 1799-1805. https://doi.org/10.1029/97JD03121
  95. Mishchenko, M. I., and L. D. Travis, 1998: Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers. J. Quant. Spectrosc. Radiat. Transfer, 60, 309-324. https://doi.org/10.1016/S0022-4073(98)00008-9
  96. Mishchenko, M. I., L. D. Travis, and D. W. Mackowski, 1996: Tmatrix computations of light scattering by nonspherical particles: A review. J. Quant. Spectrosc. Radiat. Transfer, 55, 535-575. https://doi.org/10.1016/0022-4073(96)00002-7
  97. Mishchenko, M. I., J. W. Hovenier, and L. D. Travis, 2000: Light Scattering by Nonspherical Particles. Academic Press, 690 pp.
  98. Mishchenko, M. I., L. D. Travis, and A. A. Lacis, 2002: Scattering, Absorption, and Emission of Light by Small Particles. Cambridge university press, 445 pp.
  99. Mishchenko, M. I., and Coauthors, 2016: First-principles modeling of electromagnetic scattering by discrete and discretely heterogeneous random media. Phys. Rep., 632, 1-75, doi:10.1016/j.physrep.2016.04.002.
  100. Muinonen, K., 1989: Scattering of light by crystals: A modified Kirchhoff approximation. Appl. Opt., 28, 3044-3050. https://doi.org/10.1364/AO.28.003044
  101. Muinonen, K., K. Lumme, J. Peltoniemi, and W. M. Irvine, 1989: Light scattering by randomly oriented crystals. Appl. Opt., 28, 3051-3060. https://doi.org/10.1364/AO.28.003051
  102. Muinonen, K., T. Nousiainen, P. Fast, K. Lumme, and J. I. Peltoniemi, 1996: Light scattering by Gaussian random particles: Ray optics approximation. J. Quant. Spectrosc. Radiat. Transfer, 55, 577-601. https://doi.org/10.1016/0022-4073(96)00003-9
  103. Neshyba, S. P., B. Lowen, M. Benning, A. Lawson, and P. M. Rowe, 2013: Roughness metrics of prismatic facets of ice. J. Geophys. Res. Atmos., 118, 3309-3318, doi:10.1002/jgrd.50357.
  104. Nousiainen, T., and G. M. McFarquhar, 2004: Light scattering by quasi-spherical ice crystals. J. Atmos. Sci., 61, 2229-2248. https://doi.org/10.1175/1520-0469(2004)061<2229:LSBQIC>2.0.CO;2
  105. Nousiainen, T., H. Lindqvist, G. M. McFarquhar, and J. Um, 2011: Small irregular ice crystals in tropical cirrus. J. Atmos. Sci., 68, 2614-2627, doi:10.1175/2011JAS3733.1.
  106. Oguchi, T., 1973: Scattering properties of oblate raindrops and cross polarization of radio waves due to rain-calculations at 19.3 and 34.8 GHz. J. Radio. Res. Lab. Jpn., 20, 79-118.
  107. Panetta, R. L., C. Liu, and P. Yang, 2013: A pseudo-spectral time domain method for light scattering computation. In A. A. Kokhanovsky et al. Eds., Light Scattering Reviews 8. Springer, 139-188, doi:10.1007/978-3-642-32106-1_4.
  108. Panetta, R. L., J.-N. Zhang, L. Bi, P. Yang, and G. Tang, 2016: Light scattering by hexagonal ice crystals with distributed inclusions. J. Quant. Spectrosc. Radiat. Transfer, 178, 336-349, doi:10.1016/j.jqsrt.2016.02.023.
  109. Pfalzgraff, W. C., R. M. Hulscher, and S. P. Neshyba, 2010: Scanning electron microscopy and molecular dynamics of surfaces of growing and ablating hexagonal ice crystals. Atmos. Chem. Phys., 10, 2927-2935, doi:10.5194/acp-10-2927-2010.
  110. Platnick, S., and Coauthors, 2017: The MODIS cloud optical and microphysical products: Collection 6 updates and examples from Terra and Aqua. IEEE Trans. Geosci. Remote Sens., 55, 502-525, doi:10.1109/TGRS.2016.2610522.
  111. Purcell, E. M., and C. R. Pennypacker, 1973: Scattering and absorption of light by nonspherical dielectric grains. Astrophys. J., 186, 705-714. https://doi.org/10.1086/152538
  112. Sassen, K., N. C. Knight, Y. Takano, and A. J. Heymsfield, 1994: Effects of ice-crystal structure on halo formation: cirrus cloud experimental and ray-tracing modeling studies. Appl. Opt., 33, 4590-4601. https://doi.org/10.1364/AO.33.004590
  113. Schnaiter, M., S. Buttner, O. Mohler, J. Skrotzki, M. Vragel, and R. Wagner, 2012: Influence of particle size and shape on the backscattering linear depolarisation ratio of small ice crystals - Cloud chamber measurements in the context of contrail and cirrus microphysics. Atmos. Chem. Phys., 12, 10465-10484, doi:10.5194/acp-12-10465-2012.
  114. Schnaiter, M., and Coauthors, 2016: Cloud chamber experiments on the origin of ice crystal complexity in cirrus clouds. Atmos. Chem. Phys., 16, 5091-5110, doi:10.5194/acp-16-5091-2016.
  115. Schulz, F. M., K. Stamnes, and J. J. Stamnes, 1998: Scattering of electromagnetic waves by spheroidal particles: a novel approach exploiting the T matrix computed in spheroidal coordinates. Appl. Opt., 37, 7875-7896. https://doi.org/10.1364/AO.37.007875
  116. Senf, F., and H. Deneke, 2017: Uncertainties in synthetic Meteosat SEVIRI infrared brightness temperatures in the presence of cirrus clouds and implications for evaluation of cloud microphysics. Atmos. Res., 183, 113-129, doi:10.1016/j.atmosres.2016.08.012.
  117. Shabaninezhad, M., M. G. Awan, and G. Ramakrishna, 2021: MATLAB package for discrete dipole approximation by graphics processing unit: Fast Fourier Transform and Biconjugate Gradient. J. Quant. Spectrosc. Radiat. Transfer, 262, 107501, doi:10.1016/j.jqsrt.2020.107501.
  118. Shcherbakov, A. A., 2019: Calculation of the electromagnetic scattering by non-spherical particles based on the volume integral equation in the spherical wave function basis. J. Quant. Spectrosc. Radiat. Transfer, 231, 102-114, doi:10.1016/j.jqsrt.2019.04.022.
  119. Shcherbakov, V., J.-F. Gayet, B. Backer, and P. Lawson, 2006: Light scattering by single natural ice crystals. J. Atmos. Sci., 63, 1513-1525. https://doi.org/10.1175/JAS3690.1
  120. Smith, H. R., A. J. Baran, E. Hesse, P. G. Hill, P. J. Connolly, and A. Webb, 2016: Using laboratory and field measurements to constrain a single habit shortwave optical parameterization for cirrus. Atmos. Res., 180, 226-240, doi:10.1016/j.atmosres.2016.05.005.
  121. Sun, W., and Q. Fu, 1999: Anomalous diffraction theory for arbitrarily oriented hexagonal crystals. J. Quant. Spectrosc. Radiat. Transfer, 63, 727-737. https://doi.org/10.1016/S0022-4073(99)00046-1
  122. Sun, B., P. Yang, G. W. Kattawar, and X. Zhang, 2017: Physical-geometric optics method for large size faceted particles. Opt. Express, 25, 24044-24060, doi:10.1364/OE.25.024044.
  123. Takano, Y., and K.-N. Liou, 1989: Solar radiative transfer in cirrus clouds. Part I: Single-scattering and optical properties of hexagonal ice crystals. J. Atmos. Sci., 46, 3-19. https://doi.org/10.1175/1520-0469(1989)046<0003:SRTICC>2.0.CO;2
  124. Tyynela, J., J. Leinonen, C. D. Westbrook, D. Moisseev, and T. Nousiainen, 2013: Applicability of the Rayleigh-Gans approximation for scattering by snowflakes at microwave frequencies in vertical incidence. J. Geophys. Res. Atmos., 118, 1826-1839, doi:10.1002/jgrd.50167.
  125. Ulanowski, Z., P. H. Kaye, E. Hirst, R. S. Greenaway, R. J. Cotton, E. Hesse, and C. T. Collier, 2014: Incidence of rough and irregular atmospheric ice particles from Small Ice Detector 3 measurements. Atmos. Chem. Phys., 14, 1649-1662, doi:10.5194/acp-14-1649-2014.
  126. Um, J., 2020: Calculations of optical properties of cloud particles to improve the accuracy of forward scattering probes for in-situ aircraft cloud measurements. Atmosphere, 30, 75-89, doi:10.14191/Atmos.2020.30.1.075 (in Korean with English abstract).
  127. Um, J., and G. M. McFarquhar, 2007: Single-scattering properties of aggregates of bullet rosettes in cirrus. J. Appl. Meteor. Clim., 46, 757-775. https://doi.org/10.1175/JAM2501.1
  128. Um, J., and G. M. McFarquhar, 2009: Single-scattering properties of aggregates of plates. Q. J. R. Meteorol. Soc., 135, 291-304. https://doi.org/10.1002/qj.378
  129. Um, J., and G. M. McFarquhar, 2011: Dependence of the single-scattering properties of small ice crystals on idealized shape models. Atmos. Chem. Phys., 11, 3159-3171, doi:10.5194/acp-11-3159-2011.
  130. Um, J., and G. M. McFarquhar, 2015: Formation of atmospheric halos and applicability of geometric optics for calculating single-scattering properties of hexagonal ice crystals: Impacts of aspect ratio and ice crystal size. J. Quant. Spectrosc. Radiat. Transfer, 165, 134-152, doi:10.1016/j.jqsrt.2015.07.001.
  131. Um, J., and Coauthors, 2018: Microphysical characteristics of frozen droplet aggregates from deep convective clouds. Atmos. Chem. Phys., 18, 16915-16930, doi:10.5194/acp-18-16915-2018.
  132. van de Hulst, H. C., 1981: Light scattering by small particles. Dover Publications, Mineola, N. Y., 470 pp.
  133. van Diedenhoven, B. Cairns, A. M. Fridlind, A. S. Ackerman, and T. J. Garrett, 2013: Remote sensing of ice crystal asymmetry parameter using multi-directional polarization measurements-Part 2: Application to the Research Scanning Polarimeter. Atmos. Chem. Phys., 13, 3185-3203, doi:10.5194/acp-13-3185-2013.
  134. van Diedenhoven, A. S. Ackerman, B. Cairns, and A. M. Fridlind, 2014a: A flexible parameterization for shortwave optical properties of ice crystals. J. Atoms. Sci., 71, 1763-1782, doi:10.1175/JAS-D-13-0205.1.
  135. van Diedenhoven, A. M. Fridlind, B. Cairns, and A. S. Ackerman, 2014b: Variation of ice crystal size, shape, and asymmetry parameter in tops of tropical deep convective clouds. J. Geophys. Res. Atmos., 119, 11809-11825, doi: 10.1002/2014JD022385.
  136. van Diedenhoven, A. S. Ackerman, A. M. Fridlind, and B. Cairns, 2016: On averaging aspect ratios and distortion parameters over ice crystal population ensembles for estimating effective scattering asymmetry parameters. J. Atmos. Sci., 73, 775-787, doi:10.1175/JAS-D-15-0150.1.
  137. Vogelmann, A. M., and T. P. Ackerman, 1995: Relating cirrus cloud properties to observed fluxes: A critical assessment. J. Atmos. Sci., 52, 4285-4301. https://doi.org/10.1175/1520-0469(1995)052<4285:RCCPTO>2.0.CO;2
  138. Waterman, P. C., 1971: Symmetry, unitarity, and geometry in electromagnetic scattering. Phys. Rev. D, 3, 825-839. https://doi.org/10.1103/PhysRevD.3.825
  139. Wendling, P., R. Wendling, and H. K. Weicjmann, 1979: Scattering of solar radiation by hexagonal ice crystals. Appl. Opt., 18, 2663-2671. https://doi.org/10.1364/AO.18.002663
  140. White, R. E., 1985: An introduction to the finite element method with applications to nonlinear problems. Wiley-Interscience, 354 pp.
  141. Wriedt, T., 1998: A Review of Elastic Light Scattering Theories. Part. Part. Syst. Charact., 15, 67-74. https://doi.org/10.1002/(SICI)1521-4117(199804)15:2<67::AID-PPSC67>3.0.CO;2-F
  142. Wu, Y., T. Cheng, L. Zheng, and H. Chen, 2016: Optical properties of the semi-external mixture composed of sulfate particle and different quantities of soot aggregates. J. Quant. Spectrosc. Radiat. Transfer, 179, 139-148, doi:10.1016/j.jqsrt.2016.03.012.
  143. Xie, Y., P. Yang, G. W. Kattawar, P. Minnis, and Y. X. Hu, 2009: Effect of the inhomogeneity of ice crystals on retrieving ice cloud optical thickness and effective particle size. J. Geophys. Res. Atmos., 114, D11203. https://doi.org/10.1029/2009JD012375
  144. Xie, Y., P. Yang, G. W. Kattawar, B. A. Baum, and Y. Hu, 2011: Simulation of the optical properties of plate aggregates for application to the remote sensing of cirrus clouds. Appl. Opt., 50, 1065-1081, doi:10.1364/AO.50.001065.
  145. Yang, P., and K. N. Liou, 1995: Light scattering by hexagonal ice crystals: comparison of finite-difference time domain and geometric optics models. J. Opt. Soc. Am. A, 12, 162-176. https://doi.org/10.1364/JOSAA.12.000162
  146. Yang, P., and K. N. Liou, 1996a: Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space. J. Opt. Soc. Am. A, 13, 2072-2085. https://doi.org/10.1364/JOSAA.13.002072
  147. Yang, P., and K. N. Liou, 1996b: Geometric-optics-integral-equation method for light scattering by nonspherical ice crystals. Appl. Opt., 35, 6568-6584. https://doi.org/10.1364/AO.35.006568
  148. Yang, P., and K. N. Liou, 1997: Light scattering by hexagonal ice crystals: solutions by a ray-by-ray integration algorithm. J. Opt. Soc. Am. A, 14, 2278-2289. https://doi.org/10.1364/JOSAA.14.002278
  149. Yang, P., and K. N. Liou, 1998: Single-scattering properties of complex ice crystals in terrestrial atmosphere. Contr. Atmos. Phys., 71, 223-248.
  150. Yang, P., and K. N. Liou, 2006: Light scattering and absorption by nonspherical ice crystals. In A. A. Kokhanovsky et al. Eds., Light Scattering Reviews. Springer, 31-71.
  151. Yang, P., K. N. Liou, K. Wyser, and D. Mitchell, 2000: Parameterization of the scattering and absorption properties of individual ice crystals. J. Geophys. Res. Atmos., 105, 4699-4718. https://doi.org/10.1029/1999JD900755
  152. Yang, P., B. A. Baum, A. J. Heymsfield, Y. X. Hu, H.-L. Huang, S.-C. Tsay, and S. Ackerman, 2003: Singlescattering properties of droxtals. J. Quant. Spectrosc. Rad. Transfer, 79-80, 1159-1169. https://doi.org/10.1016/S0022-4073(02)00347-3
  153. Yang, P., G. W. Kattawar, K.-N. Liou, and J. Q. Lu, 2004: Comparison of Cartesian grid configurations for application of the finite-difference time-domain method to electromagnetic scattering by dielectric particles. Appl. Opt., 43, 4611-4624. https://doi.org/10.1364/AO.43.004611
  154. Yang, P., H. Wei, H.-L. Huang, B. A. Baum, Y. X. Hu, G. W. Kattawar, M. I. Mishchenko, and Q. Fu, 2005: Scattering and absorption property database for non-spherical ice particles in the near- through far-infrared spectral region. Appl. Opt., 44, 5512-5523. https://doi.org/10.1364/AO.44.005512
  155. Yang, P., G. Hong, G. W. Kattawar, P. Minnis, and Y. Hu, 2008: Uncertainties associated with the surface texture of ice particles in satellite-based retrieval of cirrus clouds: Part II-Effect of particle surface roughness on retrieved cloud optical thickness and effective particle size. IEEE Trans. Geosci. Remote Sensing, 46, 1948-1957. https://doi.org/10.1109/TGRS.2008.916472
  156. Yang, P., L. Bi, B. A. Baum, K.-N. Liou, G. W. Kattawar, M. I. Mishchenko, and B. Cole, 2013: Spectrally consistent scattering, absorption, and polarization properties of atmospheric ice crystals at wavelengths from 0.2 to 100 ㎛. J. Atmos. Sci., 70, 330-347, doi:10.1175/JAS-D-12-039.1.
  157. Yang, P., S. Hioki, M. Saito, C.-P Kuo, B. A. Baum, and K.-N. Liou, 2018: A review of ice cloud optical property models for passive satellite remote sensing. Atmosphere, 9, 499, doi:10.3390/atmos9120499.
  158. Yang, P., J. Ding, R. L. Panetta, K. Liou, G. W. Kattawar, and M. Mishchenko, 2019: On the convergence of numerical computations for both exact and approximate solutions for electromagnetic scattering by nonspherical dielectric particles. Pr. Electromagn. Res., 164, 27-61, doi:10.2528/PIER18112810.
  159. Yang, P., W., X. Jin, and X. Gao, 2021: Vector radiative transfer equation for arbitrary shape particles derived from Maxwell's electromagnetic theory. J. Quant. Spectrosc. Radiat. Transfer, 107307, doi:10.1016/j.jqsrt.2020.107307.
  160. Yee, K., 1966: Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Trans. Antennas Propagat., 14, 302-307. https://doi.org/10.1109/TAP.1966.1138693
  161. Yi, B., P. Yang, B. A. Baum, T. L'Ecuyer, L. Oreopoulos, E. J. Mlawer, A. J. Heymsfield, and K.-N. Liou, 2013: Influence of ice particle surface roughening on the global cloud radiative effect. J. Atmos. Sci., 70, 2794-2807, doi:10.1175/JAS-D-13-020.1.
  162. Yurkin, M. A., and A. G. Hoekstra, 2007: The discrete dipole approximation: an overview and recent developments. J. Quant. Spectrosc. Radiat. Transfer, 106, 558-589. https://doi.org/10.1016/j.jqsrt.2007.01.034
  163. Yurkin, M. A., and A. G. Hoekstra, 2011: The discrete-dipole-approximation code ADDA: Capabilities and known limitations. J. Quant. Spectrosc. Radiat. Transfer, 112, 2234-2247, doi:10.1016/j.jqsrt.2011.01.031.
  164. Zhang, J., L. Bi, J. Liu, R. L. Panetta, P. Yang, and G. W. Kattawar, 2016: Optical scattering simulation of ice particles with surface roughness modeled using the Edwards-Wilkinson equation. J. Quant. Spectrosc. Radiat. Transfer, 178, 325-335, doi:10.1016/j.jqsrt.2016.02.013.
  165. Zhao, Y., and L. Ma, 2009: Assessment of two fractal scattering models for the prediction of the optical characteristics of soot aggregates. J. Quant. Spectrosc. Radiat. Transfer, 110, 315-322. https://doi.org/10.1016/j.jqsrt.2008.12.002