References
- Auriol, F., J.-F. Gayet, G. Febvre, O. Jourdan, L. Labonnote, and G. Brogniez, 2001: In situ observation of cirrus scattering phase functions with 22° and 46° halos: cloud field study on 19 February 1998. J. Atmos. Sci., 58, 3376-3390. https://doi.org/10.1175/1520-0469(2001)058<3376:ISOOCS>2.0.CO;2
- Bailey, M., and J. Hallett, 2004: Growth rates and habits of ice crystals between -20° and -70℃. J. Atmos. Sci., 61, 514-544. https://doi.org/10.1175/1520-0469(2004)061<0514:GRAHOI>2.0.CO;2
- Baran, A. J., 2009: A review of the light scattering properties of cirrus. J. Quant. Spectrosc. Radiat. Transfer, 110, 1239-1260. https://doi.org/10.1016/j.jqsrt.2009.02.026
- Baran, A. J., 2012: From the single-scattering properties of ice crystals to climate prediction: A way forward. Atmos. Res., 112, 45-69, doi:10.1016/j.atmosres.2012.04.010.
- Baran, A. J., and L.-C. Labonnote, 2007: A self-consistent scattering model for cirrus. I: The solar region. Q. J. R. Meteorol. Soc., 133, 1899-1912. https://doi.org/10.1002/qj.164
- Baran, A. J., P. D. Watts, and P. N. Francis, 1999: Testing the coherence of cirrus microphysical and bulk properties retrieved from dual-viewing multispectral satellite radiance measurements. J. Geophys. Res., 104, 31673-31683. https://doi.org/10.1029/1999JD900842
- Baran, A. J., P. N. Francis, L.-C. Labonnote, and M. Doutriux-Boucher, 2001: A scattering phase function for ice cloud: Tests of applicability using aircraft and satellite multi-angle multi-wavelength radiance measurements of cirrus. Q. J. R. Meteorol. Soc., 127, 2395-2416. https://doi.org/10.1002/qj.49712757711
- Baran, A. J., V. N. Shcherbakov, B. A. Barker, J. F. Gayet, and R. P. Lawson, 2005: On the scattering phase-function of non-symmetric ice-crystals. Q. J. R. Meteorol. Soc., 131, 2609-2616. https://doi.org/10.1256/qj.04.137
- Baran, A. J., R. Cotton, K. Furtado, S. Hayemann, L.-C. Labonnote, F. Marenco, A. Smith, and J.-C. Thelen, 2014: A self-consistent scattering model for cirrus. II: The high and low frequencies. Q. J. R. Meteorol. Soc., 140, 1039-1057, doi:10.1002/qj.2193.
- Baum, B. A., P. Yang, S. Nasiri, A. K. Heidinger, A. Heymsfield, and J. Li, 2007: Bulk scattering properties for the remote sensing of ice clouds. Part III: High-resolution spectral models from 100 to 3250 cm-1. J. Appl. Meteorol. Clim., 46, 423-434. https://doi.org/10.1175/JAM2473.1
- Baum, B. A., P. Yang, Y. X. Hu, and Q. Feng, 2010: The impact of ice particle roughness on the scattering phase matrix. J. Quant. Spectrosc. Radiat. Transfer, 111, 2534-2549, doi:10.1016/j.jqsrt.2010.07.008.
- Baum, B. A., P. Yang, A. J. Heymsfield, C. G. Schmitt, Y. Xie, A. Bansemer, Y.-X. Hu, and Z. Zhang, 2011: Improvements in shortwave bulk scattering and absorption models for the remote sensing of ice clouds. J. Appl. Meteorol. Clim, 50, 1037-1056, doi:10.1175/2010JAMC2608.1.
- Baumgardner, D., and Coauthors, 2017: Cloud ice properties: In situ measurement challenges. Meteor. Mon., 58, 9.1-9.23, doi:10.1175/AMSMONOGRAPHS-D-16-0011.1.
- Bi, L., and P. Yang, 2014: Accurate simulation of the optical properties of atmospheric ice crystals with the invariant imbedding T-matrix method. J. Quant. Spectrosc. Radiat. Transfer, 138, 17-35, doi:10.1016/j.jqsrt.2014.01.013.
- Bi, L., P. Yang, G. W. Kattawar, Y. Hu, and B. A. Baum, 2011: Scattering and absorption of light by ice particles: Solution by a new physical-geometric optics hybrid method. J. Quant. Spectrosc. Radiat. Transfer, 112, 1492-1508, doi:10.1016/j.jqsrt.2011.02.015.
- Bi, L., P. Yang, G. W. Kattawar, and M. I. Mishchenko, 2013a: Efficient implementation of the invariant imbedding T-matrix method and the separation of variables method applied to large nonspherical inhomogeneous particles. J. Quant. Spectrosc. Radiat. Transfer, 116, 169-183. https://doi.org/10.1016/j.jqsrt.2012.11.014
- Bi, L., P. Yang, G. W. Kattawar, and M. I. Mishchenko, 2013b: A numerical combination of extended boundary condition method and invariant imbedding method applied to light scattering by large spheroids and cylinders. J. Quant. Spectrosc. Radiat. Transfer, 123, 17-22, doi:10.1016/j.jqsrt.2012.11.033.
- Bohren, C. F., and D. R. Huffman, 1983: Absorption and scattering of light by small particles. Wiley, 544 pp.
- Cai, Q., and K.-N. Liou, 1982: Polarized light scattering by hexagonal ice crystals: theory. Appl. Opt., 21, 3569-3580. https://doi.org/10.1364/AO.21.003569
- Chen, G., P. Yang, and G. W. Kattawar, 2008: Application of the pseudospectral time-domain method to the scattering of light by nonspherical particles. J. Opt. Soc. Am. A, 25, 785-790.
- Chylek, P., and J. D. Klett, 1991: Extinction cross sections of nonspherical particles in the anomalous diffraction approximation. J. Opt. Soc. Am. A, 8, 274-281. https://doi.org/10.1364/josaa.8.000274
- C.-Labonnote, L., G. Brogniez, J.-C. Buriez, M. Doutriaux-Boucher, J.-F. Gayet, and A. Macke, 2001: Polarized light scattering by inhomogeneous hexagonal monocrystals: Validation with ADEOS-POLDER measurements. J. Geophys. Res. Atmos., 106, 12139-12153. https://doi.org/10.1029/2000JD900642
- Cole, B. H., P. Yang, B. A. Baum, J. Riedi, and L. C.-Labonnote, 2014: Ice particle habit and surface roughness derived from PARASOL polarization measurements. Atmos. Chem. Phys., 14, 3739-3750, doi:10.5194/acp-14-3739-2014.
- Collier, C. T., E. Hesse, L. Taylor, Z. Ulanowski, A. Penttila, and T. Nousiainen, 2016: Effects of surface roughness with two scales on light scattering by hexagonal ice crystals large compared to the wavelength: DDA results. J. Quant. Spectrosc. Radiat. Transfer, 182, 225-239, doi:10.1016/j.jqsrt.2016.06.007.
- DeVoe, H., 1964: Optical properties of molecular aggregates. I. Classical model of electronic absorption and refraction. J. Chem. Phys., 41, 393-400. https://doi.org/10.1063/1.1725879
- Doicu, A., and M. I. Mishchenko, 2018: Overview of methods for deriving the radiative transfer theory from the Maxwell equations. I: Approach based on the far-field Foldy equations. J. Quant. Spectrosc. Radiat. Transfer, 220, 123-139, doi:10.1016/j.jqsrt.2018.09.004.
- Donald, J. M., A. Golden, and S. G. Jennings, 2009: OpenDDA: a novel high-performance computational framework for the discrete dipole approximation. Int. J. High Perform. C., 23, 42-61. https://doi.org/10.1177/1094342008097914
- Draine, B. T., and P. J. Flatau, 1994: Discrete-dipole approximation for scattering calculations. J. Opt. Soc. Am. A, 11, 1491-1499. https://doi.org/10.1364/JOSAA.11.001491
- Edwards, J. M., S. Havemann, J.-C. Thelen, and A. J. Baran, 2007: A new parametrization for the radiative properties of ice crystals: Comparison with existing schemes and impact in a GCM. Atmos. Res., 83, 19-35. https://doi.org/10.1016/j.atmosres.2006.03.002
- Febvre, G., and Coauthors, 2009: On optical and microphysical characteristics of contrails and cirrus. J. Geophys. Res. Atmos., 114, D02204. https://doi.org/10.1029/2009JD012375
- Foot, J. S., 1988: Some observations of the optical properties of clouds. II: Cirrus. Q. J. R. Meteorol. Soc., 114, 145-164. https://doi.org/10.1002/qj.49711447908
- Francis, P. N., J. S. Foot, and A. J. Baran, 1999: Aircraft measurements of the solar and infrared radiative properties of cirrus and their dependence on ice crystal shape. J. Geophys. Res. Atmos., 104, 31685-31695. https://doi.org/10.1029/1999JD900438
- Frigo, M., and S. G. Johnson, 2005: The design and implementation of FFTW3. Proc. IEEE, 93, 216-231. https://doi.org/10.1109/JPROC.2004.840301
- Fu, Q., 1996: An accurate parameterization of the solar radiative properties of cirrus clouds for climate models. J. Climate, 9, 2058-2082. https://doi.org/10.1175/1520-0442(1996)009<2058:AAPOTS>2.0.CO;2
- Garrett, T. J., 2008: Observational quantification of the optical properties of cirrus cloud. In A. A. Kokhanovsky, Ed., Light Scattering Reviews 3. Springer, 3-26.
- Garrett, T. J., P. V. Hobbs, and H. Gerber, 2001: Shortwave, single-scattering properties of arctic ice clouds. J. Geophys. Res., 106, 15155-15172. https://doi.org/10.1029/2000JD900195
- Gayet, J.-F., V. Shcherbakov, H. Mannstein, A. Minikin, U. Schumann, J. Strom, A. Petzold, J. Ovarlez, and F. Immler, 2006: Microphysical and optical properties of midlatitude cirrus clouds observed in the southern hemisphere during INCA. Q. J. R. Meteorol. Soc., 132, 2719-2748. https://doi.org/10.1256/qj.05.162
- Gayet, J.-F., G. Mioche, V. Shcherbakov, C. Gourbeyre, R. Busen, and A. Minikin, 2011: Optical properties of pristine ice crystals in mid-latitude cirrus clouds: a case study during CIRCLE-2 experiment. Atmos. Chem. Phys., 11, 2537-2544, doi:10.5194/acp-11-2537-2011.
- Geogdzhayev, I., and B. Van Diedenhoven, 2016: The effect of roughness model on scattering properties of ice crystals. J. Quant. Spectrosc. Radiat. Transfer, 178, 134-141, doi:10.1016/j.jqsrt.2016.03.001.
- Gerber, H., Y. Takano, T. J. Garrett, and P. V. Hobbs, 2000: Nephelometer measurements of the asymmetry parameter, volume extinction coefficient, and backscatter ratio in Arctic clouds. J. Atmos. Sci., 57, 3021-3034. https://doi.org/10.1175/1520-0469(2000)057<3021:NMOTAP>2.0.CO;2
- Gerber, H., T. J. Garrett, A. J. Heymsfield, M. Poellot, and C. Twohy, 2004: Nephelometer measurements in Florida thunderstorms. Presentation, 14th Int. Conf. on Clouds and Precipitation, Bologna, Italy, International Union of Geodesy and Geophysics, 1092-1094.
- Gu, Y., K. N. Liou, S. C. Ou, and R. Fovell, 2011: Cirrus cloud simulations using WRF with improved radiation parameterization and increased vertical resolution. J. Geophys. Res. Atmos., 116, D06119, doi:10.1029/2010JD014574.
- Hess, M., R. B. A. Koelemeijer, and P. Stammes, 1998: Scattering matrices of imperfect hexagonal ice crystals. J. Quant. Spectrosc. Radiat. Transfer, 60, 301-308. https://doi.org/10.1016/S0022-4073(98)00007-7
- Hioki, S., P. Yang, B. A. Baum, S. Platnick, K. G. Meyer, M. D. King, and J. Riedi, 2016: Degree of ice particle surface roughness inferred from polarimetric observations. Atmos. Chem. Phys., 16, 7545-7558, doi:10.5194/acp-16-7545-2016.
- Hogan, R. J., and C. D. Westbrook, 2014: Equation for the microwave backscatter cross section of aggregate snowflakes using the self-similar Rayleigh-Gans approximation. J. Atmos. Sci., 71, 3292-3301, doi:10.1175/JAS-D-13-0347.1.
- Hogan, R. J., L. Tian, P. R. A. Brown, C. D. Westbrook, A. J. Heymsfield, and J. D. Eastment, 2012: Radar scattering from ice aggregates using the horizontally aligned oblate spheroid approximation. J. Appl. Meteorol. Clim., 51, 655-671, doi:10.1175/JAMC-D-11-074.1.
- Hogan, R. J., R. Honeyager, J. Tyynela, and S. Kneifel, 2017: Calculating the millimetre-wave scattering phase function of snowflakes using the self-similar Rayleigh-Gans Approximation. Q. J. R. Meteorol. Soc., 143, 834-844, doi:10.1002/qj.2968.
- Hong, G., P. Yang, B. A. Baum, A. J. Heymsfield, and K.-M. Xu, 2009: Parameterization of shortwave and longwave radiative properties of ice clouds for use in climate models. J. Climate, 22, 6287-6312. https://doi.org/10.1175/2009JCLI2844.1
- Hu, S., L. Liu, T. Gao, and Q. Zeng, 2019: Design and validation of the invariant imbedded T-Matrix scattering model for atmospheric particles with arbitrary shapes. Appl. Sci., 9, 4423, doi:10.3390/app9204423.
- Iaquinta, J., H. Isaka, and P. Personne, 1995: Scattering phase function of bullet rosette ice crystals. J. Atmos. Sci., 52, 1401-1413. https://doi.org/10.1175/1520-0469(1995)052<1401:SPFOBR>2.0.CO;2
- Ishimoto, H., K. Masuda, Y. Mano, N. Orikasa, and A. Uchiyama, 2012: Irregularly shaped ice aggregates in optical modeling of convectively generated ice clouds. J. Quant. Spectrosc. Radiat. Transfer, 113, 632-643, doi:10.1016/j.jqsrt.2012.01.017.
- Jackson, J. D., 1998: Classical electrodynamics, 3rd ed.. Wiley, 832 pp.
- Johnson, B. R., 1988: Invariant imbedding T matrix approach to electromagnetic scattering. Appl. Opt., 27, 4861-4873. https://doi.org/10.1364/AO.27.004861
- Jarvinen, E., and Coauthors, 2018: Additional global climate cooling by clouds due to ice crystal complexity. Atmos. Chem. Phys., 18, 15767-15781, doi:10.5194/acp-18-15767-2018.
- Jourdan, O., G. Mioche, T. J. Garrett, A. Schwarzenbock, J. Vidot, Y. Xie, V. Shcherbakov, P. Yang, and J.-F. Gayet, 2010: Coupling of the microphysical and optical properties of an Arctic nimbostratus cloud during the ASTAR 2004 experiment: Implications for light-scattering modeling. J. Geophys. Res. Atmos., 115, D23206, doi:10.1029/2010JD014016.
- Kahnert, M., 2003: Numerical methods in electromagnetic scattering theory. J. Quant. Spectrosc. Radiat. Transfer, 79, 775-824. https://doi.org/10.1016/S0022-4073(02)00321-7
- Kahnert, M., 2010: Electromagnetic scattering by nonspherical particles: recent advances. J. Quant. Spectrosc. Radiat. Transfer, 111, 1788-1790, doi:10.1016/j.jqsrt.2009.12.007.
- Kahnert, M., 2013: The T-matrix code Tsym for homogeneous dielectric particles with finite symmetries. J. Quant. Spectrosc. Radiat. Transfer, 123, 62-78, doi:10.1016/j.jqsrt.2012.12.019.
- Kahnert, M., 2016: Numerical solutions of the macroscopic Maxwell equations for scattering by non-spherical particles: a tutorial review. J. Quant. Spectrosc. Radiat. Transfer, 178, 22-37. https://doi.org/10.1016/j.jqsrt.2015.10.029
- Kahnert, M., and A. Devasthale, 2011: Black carbon fractal morphology and short-wave radiative impact: a modelling study. Atmos. Chem. Phys., 11, 11745-11759, doi:10.5194/acp-11-11745-2011.
- Knap, W. H., M. Hess, P. Stammes, R. B. A. Koelemeijer, and P. D. Watts, 1999: Cirrus optical thickness and crystal size retrieval from ATSR-2 data using phase functions of imperfect hexagonal ice crystals. J. Geophys. Res. Atmos., 104, 31721-31730. https://doi.org/10.1029/1999JD900267
- Korolev, A. V., G. A. Isaac, and J. Hallett, 1999: Ice particle habits in Arctic clouds. Geophys. Res. Lett., 26, 1299-1302. https://doi.org/10.1029/1999GL900232
- Lawson, R. P., and Coauthors, 2019: A review of ice particle shapes in cirrus formed in situ and in anvils. J. Geophys. Res. Atmos., 124, 10049-10090, doi:10.1029/2018JD030122.
- Leinonen, J., S. Kneifel, and R. J. Hogan, 2017: Evaluation of the Rayleigh-Gans approximation for microwave scattering by rimed snowflakes. Q. J. R. Meteorol. Soc., 144, 77-88, doi:10.1002/qj.3093.
- Liou, K. N., 2002: An Introduction to Atmospheric Radiation. Academic Press, 583 pp.
- Liou, K. N., and P. Yang, 2016: Light Scattering by Ice Crystals: Fundamentals and Applications. Cambridge University Press, 460 pp, doi:10.1017/CBO9781139030052.
- Liou, K. N., Y. Takano, C. He, P. Yang, L. R. Leung, Y. Gu, and W. L. Lee, 2014: Stochastic parameterization for light absorption by internally mixed BC/dust in snow grains for application to climate models. J. Geophys. Res. Atmos., 119, 7616-7632, doi:10.1002/2014JD021665.
- Liu, C., R. L. Panetta, and P. Yang, 2012: Application of the pseudo-spectral time domain method to compute particle single-scattering properties for size parameters up to 200. J. Quant. Spectrosc. Radiat. Transfer, 113, 1728-1740, doi:10.1016/j.jqsrt.2012.04.021.
- Liu, C., R. L. Panetta, and P. Yang, 2013: The effects of surface roughness on the scattering properties of hexagonal columns with sizes from the Rayleigh to the geometric optics regimes. J. Quant. Spectrosc. Radiat. Transfer, 129, 169-185, doi:10.1016/j.jqsrt.2013.06.011.
- Liu, C., P. Yang, P. Minnis, N. Loeb, S. Kato, A. Heymsfield, and C. Schmitt, 2014: A two-habit model for the microphysical and optical properties of ice clouds. Atmos. Chem. Phys., 14, 13719-13737, doi:10.5194/acp-14-13719-2014.
- Liu, C., J. Li, Y. Yin, B. Zhu, and Q. Feng, 2017: Optical properties of black carbon aggregates with non-absorptive coating. J. Quant. Spectrosc. Radiat. Transfer, 187, 443-452, doi:10.1016/j.jqsrt.2016.10.023.
- Liu, C., X. Xu, Y. Yin, M. Schnaiter, and Y. L. Yung, 2019: Black carbon aggregates: A database for optical properties. J. Quant. Spectrosc. Radiat. Transfer, 222, 170-179, doi:10.1016/j.jqsrt.2018.10.021.
- Liu, L., and M. I. Mishchenko, 2007: Scattering and radiative properties of complex soot and soot-containing aggregate particles. J. Quant. Spectrosc. Radiat. Transfer, 106, 262-273. https://doi.org/10.1016/j.jqsrt.2007.01.020
- Liu, L., M. I. Mishchenko, and W. P. Arnott, 2008: A study of radiative properties of fractal soot aggregates using the superposition T-matrix method. J. Quant. Spectrosc. Radiat. Transfer, 109, 2656-2663. https://doi.org/10.1016/j.jqsrt.2008.05.001
- Liu, Q. H., 1998: The PSTD algorithm: A time-domain method requiring only two cells per wavelength. Microw. Opt. Technol. Lett., 15, 158-165. https://doi.org/10.1002/(SICI)1098-2760(19970620)15:3<158::AID-MOP11>3.0.CO;2-3
- Macke, A., 1993: Scattering of light by polyhedral ice crystals. Appl. Opt., 32, 2780-2788. https://doi.org/10.1364/AO.32.002780
- Macke, A., J. Mueller, and E. Raschke, 1996a: Single scattering properties of atmospheric ice crystals. J. Atmos. Sci., 53, 2813-2825. https://doi.org/10.1175/1520-0469(1996)053<2813:SSPOAI>2.0.CO;2
- Macke, A., M. I. Mishchenko, and B. Cairns, 1996b: The influence of inclusions on light scattering by large ice particles. J. Geophys. Res. Atmos., 101, 23311-23316. https://doi.org/10.1029/96JD02364
- Mackowski, D. W., 2014: A general superposition solution for electromagnetic scattering by multiple spherical domains of optically active media. J. Quant. Spectrosc. Radiat. Transfer, 133, 264-270, doi:10.1016/j.jqsrt.2013.08.012.
- Mackowski, D. W., and M. I. Mishchenko, 1996: Calculation of the T matrix and the scattering matrix for ensembles of spheres. J. Opt. Soc. Am. A, 13, 2266-2278. https://doi.org/10.1364/JOSAA.13.002266
- Mackowski, D. W., and M. I. Mishchenko, 2011: A multiple sphere T-matrix Fortran code for use on parallel computer clusters. J. Quant. Spectrosc. Radiat. Transfer, 112, 2182-2192, doi:10.1016/j.jqsrt.2011.02.019.
- Magee, N. B., A. Miller, M. Amaral, and A. Cumiskey, 2014: Mesoscopic surface roughness of ice crystals pervasive across a wide range of ice crystal conditions. Atmos. Chem. Phys., 14, 12357-12371, doi:10.5194/acp-14-12357-2014.
- Magee, N. B., and Coauthors, 2021: Captured cirrus ice particles in high definition. Atmos. Chem. Phys. Discuss., in review, 2020, doi:10.5194/acp-2020-486.
- Markkanen, J., and A. J. Yuffa, 2017: Fast superposition Tmatrix solution for clusters with arbitrarily-shaped constituent particles. J. Quant. Spectrosc. Radiat. Transfer, 189, 181-188, doi:10.1016/j.jqsrt.2016.11.004.
- McFarquhar, G. M., A. J. Heymsfield, A. Macke, J. Iaquinta, and S. M. Aulenbach, 1999: Use of observed ice crystal sizes and shapes to calculate mean-scattering properties and multispectral radiances: CEPEX April 4, 1993, case study. J. Geophys. Res. Atmos., 104, 31763-31779. https://doi.org/10.1029/1999JD900802
- McFarquhar, G. M., A. J. Heymsfield, J. Spinhirne, and B. Hart, 2000: Thin and subvisual tropopause tropical cirrus: Observations and radiative impacts. J. Atmos. Sci., 57, 1841-1853. https://doi.org/10.1175/1520-0469(2000)057<1841:TASTTC>2.0.CO;2
- McFarquhar, G. M., P. Yang, A. Macke, and A. J. Baran, 2002: A new parameterization of single scattering solar radiative properties for tropical anvils using observed ice crystal size and shape distributions. J. Atmos. Sci., 59, 2458-2478. https://doi.org/10.1175/1520-0469(2002)059<2458:ANPOSS>2.0.CO;2
- Mandel, L., and E. Wolf, 1995: Optical coherence and quantum optics, Cambridge university press, 1194 pp.
- Mitchell, D. L., and W. P. Arnott, 1994: A model predicting the evolution of ice particle size spectra and radiative properties of cirrus clouds. Part II: Dependence of absorption and extinction on ice crystal morphology. J. Atmos. Sci., 51, 817-832. https://doi.org/10.1175/1520-0469(1994)051<0817:AMPTEO>2.0.CO;2
- Mishchenko, M. I., 2003: Radiative transfer theory: From Maxwell's equations to practical applications. In B. A. van Tiggelen et al. Eds., Wave Scattering in Complex Media: From Theory to Applications, Springer, 366-414.
- Mishchenko, M. I., 2006: Maxwell's equations, radiative transfer, and coherent backscattering: A general perspective. J. Quant. Spectrosc. Radiat. Transfer, 101, 540-555. https://doi.org/10.1016/j.jqsrt.2006.02.065
- Mishchenko, M. I., 2009: Electromagnetic scattering by nonspherical particles: A tutorial review. J. Quant. Spectrosc. Radiat. Transfer, 110, 808-832. https://doi.org/10.1016/j.jqsrt.2008.12.005
- Mishchenko, M. I., 2020: Comprehensive thematic T-matrix reference database: a 2017-2019 update. J. Quant. Spectrosc. Radiat. Transfer, 242, 106692, doi:10.1016/j.jqsrt.2019.106692.
- Mishchenko, M. I., and A. Macke, 1998: Incorporation of physical optics effects and computation of the Legendre expansion for ray-tracing phase functions involving δ-function transmission. J. Geophys. Res. Atmos., 103, 1799-1805. https://doi.org/10.1029/97JD03121
- Mishchenko, M. I., and L. D. Travis, 1998: Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers. J. Quant. Spectrosc. Radiat. Transfer, 60, 309-324. https://doi.org/10.1016/S0022-4073(98)00008-9
- Mishchenko, M. I., L. D. Travis, and D. W. Mackowski, 1996: Tmatrix computations of light scattering by nonspherical particles: A review. J. Quant. Spectrosc. Radiat. Transfer, 55, 535-575. https://doi.org/10.1016/0022-4073(96)00002-7
- Mishchenko, M. I., J. W. Hovenier, and L. D. Travis, 2000: Light Scattering by Nonspherical Particles. Academic Press, 690 pp.
- Mishchenko, M. I., L. D. Travis, and A. A. Lacis, 2002: Scattering, Absorption, and Emission of Light by Small Particles. Cambridge university press, 445 pp.
- Mishchenko, M. I., and Coauthors, 2016: First-principles modeling of electromagnetic scattering by discrete and discretely heterogeneous random media. Phys. Rep., 632, 1-75, doi:10.1016/j.physrep.2016.04.002.
- Muinonen, K., 1989: Scattering of light by crystals: A modified Kirchhoff approximation. Appl. Opt., 28, 3044-3050. https://doi.org/10.1364/AO.28.003044
- Muinonen, K., K. Lumme, J. Peltoniemi, and W. M. Irvine, 1989: Light scattering by randomly oriented crystals. Appl. Opt., 28, 3051-3060. https://doi.org/10.1364/AO.28.003051
- Muinonen, K., T. Nousiainen, P. Fast, K. Lumme, and J. I. Peltoniemi, 1996: Light scattering by Gaussian random particles: Ray optics approximation. J. Quant. Spectrosc. Radiat. Transfer, 55, 577-601. https://doi.org/10.1016/0022-4073(96)00003-9
- Neshyba, S. P., B. Lowen, M. Benning, A. Lawson, and P. M. Rowe, 2013: Roughness metrics of prismatic facets of ice. J. Geophys. Res. Atmos., 118, 3309-3318, doi:10.1002/jgrd.50357.
- Nousiainen, T., and G. M. McFarquhar, 2004: Light scattering by quasi-spherical ice crystals. J. Atmos. Sci., 61, 2229-2248. https://doi.org/10.1175/1520-0469(2004)061<2229:LSBQIC>2.0.CO;2
- Nousiainen, T., H. Lindqvist, G. M. McFarquhar, and J. Um, 2011: Small irregular ice crystals in tropical cirrus. J. Atmos. Sci., 68, 2614-2627, doi:10.1175/2011JAS3733.1.
- Oguchi, T., 1973: Scattering properties of oblate raindrops and cross polarization of radio waves due to rain-calculations at 19.3 and 34.8 GHz. J. Radio. Res. Lab. Jpn., 20, 79-118.
- Panetta, R. L., C. Liu, and P. Yang, 2013: A pseudo-spectral time domain method for light scattering computation. In A. A. Kokhanovsky et al. Eds., Light Scattering Reviews 8. Springer, 139-188, doi:10.1007/978-3-642-32106-1_4.
- Panetta, R. L., J.-N. Zhang, L. Bi, P. Yang, and G. Tang, 2016: Light scattering by hexagonal ice crystals with distributed inclusions. J. Quant. Spectrosc. Radiat. Transfer, 178, 336-349, doi:10.1016/j.jqsrt.2016.02.023.
- Pfalzgraff, W. C., R. M. Hulscher, and S. P. Neshyba, 2010: Scanning electron microscopy and molecular dynamics of surfaces of growing and ablating hexagonal ice crystals. Atmos. Chem. Phys., 10, 2927-2935, doi:10.5194/acp-10-2927-2010.
- Platnick, S., and Coauthors, 2017: The MODIS cloud optical and microphysical products: Collection 6 updates and examples from Terra and Aqua. IEEE Trans. Geosci. Remote Sens., 55, 502-525, doi:10.1109/TGRS.2016.2610522.
- Purcell, E. M., and C. R. Pennypacker, 1973: Scattering and absorption of light by nonspherical dielectric grains. Astrophys. J., 186, 705-714. https://doi.org/10.1086/152538
- Sassen, K., N. C. Knight, Y. Takano, and A. J. Heymsfield, 1994: Effects of ice-crystal structure on halo formation: cirrus cloud experimental and ray-tracing modeling studies. Appl. Opt., 33, 4590-4601. https://doi.org/10.1364/AO.33.004590
- Schnaiter, M., S. Buttner, O. Mohler, J. Skrotzki, M. Vragel, and R. Wagner, 2012: Influence of particle size and shape on the backscattering linear depolarisation ratio of small ice crystals - Cloud chamber measurements in the context of contrail and cirrus microphysics. Atmos. Chem. Phys., 12, 10465-10484, doi:10.5194/acp-12-10465-2012.
- Schnaiter, M., and Coauthors, 2016: Cloud chamber experiments on the origin of ice crystal complexity in cirrus clouds. Atmos. Chem. Phys., 16, 5091-5110, doi:10.5194/acp-16-5091-2016.
- Schulz, F. M., K. Stamnes, and J. J. Stamnes, 1998: Scattering of electromagnetic waves by spheroidal particles: a novel approach exploiting the T matrix computed in spheroidal coordinates. Appl. Opt., 37, 7875-7896. https://doi.org/10.1364/AO.37.007875
- Senf, F., and H. Deneke, 2017: Uncertainties in synthetic Meteosat SEVIRI infrared brightness temperatures in the presence of cirrus clouds and implications for evaluation of cloud microphysics. Atmos. Res., 183, 113-129, doi:10.1016/j.atmosres.2016.08.012.
- Shabaninezhad, M., M. G. Awan, and G. Ramakrishna, 2021: MATLAB package for discrete dipole approximation by graphics processing unit: Fast Fourier Transform and Biconjugate Gradient. J. Quant. Spectrosc. Radiat. Transfer, 262, 107501, doi:10.1016/j.jqsrt.2020.107501.
- Shcherbakov, A. A., 2019: Calculation of the electromagnetic scattering by non-spherical particles based on the volume integral equation in the spherical wave function basis. J. Quant. Spectrosc. Radiat. Transfer, 231, 102-114, doi:10.1016/j.jqsrt.2019.04.022.
- Shcherbakov, V., J.-F. Gayet, B. Backer, and P. Lawson, 2006: Light scattering by single natural ice crystals. J. Atmos. Sci., 63, 1513-1525. https://doi.org/10.1175/JAS3690.1
- Smith, H. R., A. J. Baran, E. Hesse, P. G. Hill, P. J. Connolly, and A. Webb, 2016: Using laboratory and field measurements to constrain a single habit shortwave optical parameterization for cirrus. Atmos. Res., 180, 226-240, doi:10.1016/j.atmosres.2016.05.005.
- Sun, W., and Q. Fu, 1999: Anomalous diffraction theory for arbitrarily oriented hexagonal crystals. J. Quant. Spectrosc. Radiat. Transfer, 63, 727-737. https://doi.org/10.1016/S0022-4073(99)00046-1
- Sun, B., P. Yang, G. W. Kattawar, and X. Zhang, 2017: Physical-geometric optics method for large size faceted particles. Opt. Express, 25, 24044-24060, doi:10.1364/OE.25.024044.
- Takano, Y., and K.-N. Liou, 1989: Solar radiative transfer in cirrus clouds. Part I: Single-scattering and optical properties of hexagonal ice crystals. J. Atmos. Sci., 46, 3-19. https://doi.org/10.1175/1520-0469(1989)046<0003:SRTICC>2.0.CO;2
- Tyynela, J., J. Leinonen, C. D. Westbrook, D. Moisseev, and T. Nousiainen, 2013: Applicability of the Rayleigh-Gans approximation for scattering by snowflakes at microwave frequencies in vertical incidence. J. Geophys. Res. Atmos., 118, 1826-1839, doi:10.1002/jgrd.50167.
- Ulanowski, Z., P. H. Kaye, E. Hirst, R. S. Greenaway, R. J. Cotton, E. Hesse, and C. T. Collier, 2014: Incidence of rough and irregular atmospheric ice particles from Small Ice Detector 3 measurements. Atmos. Chem. Phys., 14, 1649-1662, doi:10.5194/acp-14-1649-2014.
- Um, J., 2020: Calculations of optical properties of cloud particles to improve the accuracy of forward scattering probes for in-situ aircraft cloud measurements. Atmosphere, 30, 75-89, doi:10.14191/Atmos.2020.30.1.075 (in Korean with English abstract).
- Um, J., and G. M. McFarquhar, 2007: Single-scattering properties of aggregates of bullet rosettes in cirrus. J. Appl. Meteor. Clim., 46, 757-775. https://doi.org/10.1175/JAM2501.1
- Um, J., and G. M. McFarquhar, 2009: Single-scattering properties of aggregates of plates. Q. J. R. Meteorol. Soc., 135, 291-304. https://doi.org/10.1002/qj.378
- Um, J., and G. M. McFarquhar, 2011: Dependence of the single-scattering properties of small ice crystals on idealized shape models. Atmos. Chem. Phys., 11, 3159-3171, doi:10.5194/acp-11-3159-2011.
- Um, J., and G. M. McFarquhar, 2015: Formation of atmospheric halos and applicability of geometric optics for calculating single-scattering properties of hexagonal ice crystals: Impacts of aspect ratio and ice crystal size. J. Quant. Spectrosc. Radiat. Transfer, 165, 134-152, doi:10.1016/j.jqsrt.2015.07.001.
- Um, J., and Coauthors, 2018: Microphysical characteristics of frozen droplet aggregates from deep convective clouds. Atmos. Chem. Phys., 18, 16915-16930, doi:10.5194/acp-18-16915-2018.
- van de Hulst, H. C., 1981: Light scattering by small particles. Dover Publications, Mineola, N. Y., 470 pp.
- van Diedenhoven, B. Cairns, A. M. Fridlind, A. S. Ackerman, and T. J. Garrett, 2013: Remote sensing of ice crystal asymmetry parameter using multi-directional polarization measurements-Part 2: Application to the Research Scanning Polarimeter. Atmos. Chem. Phys., 13, 3185-3203, doi:10.5194/acp-13-3185-2013.
- van Diedenhoven, A. S. Ackerman, B. Cairns, and A. M. Fridlind, 2014a: A flexible parameterization for shortwave optical properties of ice crystals. J. Atoms. Sci., 71, 1763-1782, doi:10.1175/JAS-D-13-0205.1.
- van Diedenhoven, A. M. Fridlind, B. Cairns, and A. S. Ackerman, 2014b: Variation of ice crystal size, shape, and asymmetry parameter in tops of tropical deep convective clouds. J. Geophys. Res. Atmos., 119, 11809-11825, doi: 10.1002/2014JD022385.
- van Diedenhoven, A. S. Ackerman, A. M. Fridlind, and B. Cairns, 2016: On averaging aspect ratios and distortion parameters over ice crystal population ensembles for estimating effective scattering asymmetry parameters. J. Atmos. Sci., 73, 775-787, doi:10.1175/JAS-D-15-0150.1.
- Vogelmann, A. M., and T. P. Ackerman, 1995: Relating cirrus cloud properties to observed fluxes: A critical assessment. J. Atmos. Sci., 52, 4285-4301. https://doi.org/10.1175/1520-0469(1995)052<4285:RCCPTO>2.0.CO;2
- Waterman, P. C., 1971: Symmetry, unitarity, and geometry in electromagnetic scattering. Phys. Rev. D, 3, 825-839. https://doi.org/10.1103/PhysRevD.3.825
- Wendling, P., R. Wendling, and H. K. Weicjmann, 1979: Scattering of solar radiation by hexagonal ice crystals. Appl. Opt., 18, 2663-2671. https://doi.org/10.1364/AO.18.002663
- White, R. E., 1985: An introduction to the finite element method with applications to nonlinear problems. Wiley-Interscience, 354 pp.
- Wriedt, T., 1998: A Review of Elastic Light Scattering Theories. Part. Part. Syst. Charact., 15, 67-74. https://doi.org/10.1002/(SICI)1521-4117(199804)15:2<67::AID-PPSC67>3.0.CO;2-F
- Wu, Y., T. Cheng, L. Zheng, and H. Chen, 2016: Optical properties of the semi-external mixture composed of sulfate particle and different quantities of soot aggregates. J. Quant. Spectrosc. Radiat. Transfer, 179, 139-148, doi:10.1016/j.jqsrt.2016.03.012.
- Xie, Y., P. Yang, G. W. Kattawar, P. Minnis, and Y. X. Hu, 2009: Effect of the inhomogeneity of ice crystals on retrieving ice cloud optical thickness and effective particle size. J. Geophys. Res. Atmos., 114, D11203. https://doi.org/10.1029/2009JD012375
- Xie, Y., P. Yang, G. W. Kattawar, B. A. Baum, and Y. Hu, 2011: Simulation of the optical properties of plate aggregates for application to the remote sensing of cirrus clouds. Appl. Opt., 50, 1065-1081, doi:10.1364/AO.50.001065.
- Yang, P., and K. N. Liou, 1995: Light scattering by hexagonal ice crystals: comparison of finite-difference time domain and geometric optics models. J. Opt. Soc. Am. A, 12, 162-176. https://doi.org/10.1364/JOSAA.12.000162
- Yang, P., and K. N. Liou, 1996a: Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space. J. Opt. Soc. Am. A, 13, 2072-2085. https://doi.org/10.1364/JOSAA.13.002072
- Yang, P., and K. N. Liou, 1996b: Geometric-optics-integral-equation method for light scattering by nonspherical ice crystals. Appl. Opt., 35, 6568-6584. https://doi.org/10.1364/AO.35.006568
- Yang, P., and K. N. Liou, 1997: Light scattering by hexagonal ice crystals: solutions by a ray-by-ray integration algorithm. J. Opt. Soc. Am. A, 14, 2278-2289. https://doi.org/10.1364/JOSAA.14.002278
- Yang, P., and K. N. Liou, 1998: Single-scattering properties of complex ice crystals in terrestrial atmosphere. Contr. Atmos. Phys., 71, 223-248.
- Yang, P., and K. N. Liou, 2006: Light scattering and absorption by nonspherical ice crystals. In A. A. Kokhanovsky et al. Eds., Light Scattering Reviews. Springer, 31-71.
- Yang, P., K. N. Liou, K. Wyser, and D. Mitchell, 2000: Parameterization of the scattering and absorption properties of individual ice crystals. J. Geophys. Res. Atmos., 105, 4699-4718. https://doi.org/10.1029/1999JD900755
- Yang, P., B. A. Baum, A. J. Heymsfield, Y. X. Hu, H.-L. Huang, S.-C. Tsay, and S. Ackerman, 2003: Singlescattering properties of droxtals. J. Quant. Spectrosc. Rad. Transfer, 79-80, 1159-1169. https://doi.org/10.1016/S0022-4073(02)00347-3
- Yang, P., G. W. Kattawar, K.-N. Liou, and J. Q. Lu, 2004: Comparison of Cartesian grid configurations for application of the finite-difference time-domain method to electromagnetic scattering by dielectric particles. Appl. Opt., 43, 4611-4624. https://doi.org/10.1364/AO.43.004611
- Yang, P., H. Wei, H.-L. Huang, B. A. Baum, Y. X. Hu, G. W. Kattawar, M. I. Mishchenko, and Q. Fu, 2005: Scattering and absorption property database for non-spherical ice particles in the near- through far-infrared spectral region. Appl. Opt., 44, 5512-5523. https://doi.org/10.1364/AO.44.005512
- Yang, P., G. Hong, G. W. Kattawar, P. Minnis, and Y. Hu, 2008: Uncertainties associated with the surface texture of ice particles in satellite-based retrieval of cirrus clouds: Part II-Effect of particle surface roughness on retrieved cloud optical thickness and effective particle size. IEEE Trans. Geosci. Remote Sensing, 46, 1948-1957. https://doi.org/10.1109/TGRS.2008.916472
- Yang, P., L. Bi, B. A. Baum, K.-N. Liou, G. W. Kattawar, M. I. Mishchenko, and B. Cole, 2013: Spectrally consistent scattering, absorption, and polarization properties of atmospheric ice crystals at wavelengths from 0.2 to 100 ㎛. J. Atmos. Sci., 70, 330-347, doi:10.1175/JAS-D-12-039.1.
- Yang, P., S. Hioki, M. Saito, C.-P Kuo, B. A. Baum, and K.-N. Liou, 2018: A review of ice cloud optical property models for passive satellite remote sensing. Atmosphere, 9, 499, doi:10.3390/atmos9120499.
- Yang, P., J. Ding, R. L. Panetta, K. Liou, G. W. Kattawar, and M. Mishchenko, 2019: On the convergence of numerical computations for both exact and approximate solutions for electromagnetic scattering by nonspherical dielectric particles. Pr. Electromagn. Res., 164, 27-61, doi:10.2528/PIER18112810.
- Yang, P., W., X. Jin, and X. Gao, 2021: Vector radiative transfer equation for arbitrary shape particles derived from Maxwell's electromagnetic theory. J. Quant. Spectrosc. Radiat. Transfer, 107307, doi:10.1016/j.jqsrt.2020.107307.
- Yee, K., 1966: Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Trans. Antennas Propagat., 14, 302-307. https://doi.org/10.1109/TAP.1966.1138693
- Yi, B., P. Yang, B. A. Baum, T. L'Ecuyer, L. Oreopoulos, E. J. Mlawer, A. J. Heymsfield, and K.-N. Liou, 2013: Influence of ice particle surface roughening on the global cloud radiative effect. J. Atmos. Sci., 70, 2794-2807, doi:10.1175/JAS-D-13-020.1.
- Yurkin, M. A., and A. G. Hoekstra, 2007: The discrete dipole approximation: an overview and recent developments. J. Quant. Spectrosc. Radiat. Transfer, 106, 558-589. https://doi.org/10.1016/j.jqsrt.2007.01.034
- Yurkin, M. A., and A. G. Hoekstra, 2011: The discrete-dipole-approximation code ADDA: Capabilities and known limitations. J. Quant. Spectrosc. Radiat. Transfer, 112, 2234-2247, doi:10.1016/j.jqsrt.2011.01.031.
- Zhang, J., L. Bi, J. Liu, R. L. Panetta, P. Yang, and G. W. Kattawar, 2016: Optical scattering simulation of ice particles with surface roughness modeled using the Edwards-Wilkinson equation. J. Quant. Spectrosc. Radiat. Transfer, 178, 325-335, doi:10.1016/j.jqsrt.2016.02.013.
- Zhao, Y., and L. Ma, 2009: Assessment of two fractal scattering models for the prediction of the optical characteristics of soot aggregates. J. Quant. Spectrosc. Radiat. Transfer, 110, 315-322. https://doi.org/10.1016/j.jqsrt.2008.12.002