Acknowledgement
We thank the owner of a large-scale farm of sheep in Inner Mongolia for providing lung tissues. We thank our colleague Jinling Wang for his assistance in the pathological examination.
References
- Pepin M, Vitu C, Russo P, Mornex JF, Peterhans E. Maedi-Visna virus infection in sheep: a review. Vet Res. 1998;29(3-4):341-367.
- Muz D, Oguzoglu TC, Rosati S, Reina R, Bertolotti L, Burgu I. First molecular characterization of Visna/Maedi viruses from naturally infected sheep in Turkey. Arch Virol. 2013;158(3):559-570. https://doi.org/10.1007/s00705-012-1518-1
- Chapter 3.7.2 Caprine Arthritis/Encephalitis and Maedi-Visna [Internet]. Paris: OIE; https://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/3.07.02_CAE_MV.pdf. Updated 2019. Accessed 2019 Jan 1.
- Kalogianni AI, Bossis I, Ekateriniadou LV, Gelasakis AI. Etiology, epizootiology and control of MaediVisna in dairy sheep: a review. Animals (Basel). 2020;10(4):E616.
- Gomez-Lucia E, Barquero N, Domenech A. Maedi-Visna virus: current perspectives. Vet Med (Auckl). 2018;9:11-21. https://doi.org/10.2147/VMRR.S136705
- Michiels R, Adjadj NR, De Regge N. Phylogenetic analysis of Belgian small ruminant lentiviruses supports cross species virus transmission and identifies new subtype b5 strains. Pathogens. 2020;9(3):183. https://doi.org/10.3390/pathogens9030183
- Shah C, Boni J, Huder JB, Vogt HR, Muhlherr J, Zanoni R, et al. Phylogenetic analysis and reclassification of caprine and ovine lentiviruses based on 104 new isolates: evidence for regular sheep-to-goat transmission and worldwide propagation through livestock trade. Virology. 2004;319(1):12-26. https://doi.org/10.1016/j.virol.2003.09.047
- Olech M, Valas S, Kuzmak J. Epidemiological survey in single-species flocks from Poland reveals expanded genetic and antigenic diversity of small ruminant lentiviruses. PLoS One. 2018;13(3):e0193892. https://doi.org/10.1371/journal.pone.0193892
- Schuster SC. Next-generation sequencing transforms today's biology. Nat Methods. 2008;5(1):16-18. https://doi.org/10.1038/nmeth1156
- Joffret ML, Polston PM, Razafindratsimandresy R, Bessaud M, Heraud JM, Delpeyroux F. Whole genome sequencing of enteroviruses species A to D by high-throughput sequencing: application for viral mixtures. Front Microbiol. 2018;9:2339. https://doi.org/10.3389/fmicb.2018.02339
- Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565-574. https://doi.org/10.1016/s0140-6736(20)30251-8
- Slatko BE, Gardner AF, Ausubel FM. Overview of next-generation sequencing technologies. Curr Protoc Mol Biol. 2018;122(1):e59.
- Singh R, Kumar P, Singh R, Dhama K, Kumari S, Yadav JP, et al. Pathology and polymerase chain reaction detection of ovine progressive pneumonia (maedi) cases in slaughtered sheep in India. Vet World. 2017;10(11):1401-1406. https://doi.org/10.14202/vetworld.2017.1401-1406
- Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I. ABySS: a parallel assembler for short read sequence data. Genome Res. 2009;19(6):1117-1123. https://doi.org/10.1101/gr.089532.108
- Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res. 2010;20(2):265-272. https://doi.org/10.1101/gr.097261.109
- Grego E, Profiti M, Giammarioli M, Giannino L, Rutili D, Woodall C, et al. Genetic heterogeneity of small ruminant lentiviruses involves immunodominant epitope of capsid antigen and affects sensitivity of single-strain-based immunoassay. Clin Diagn Lab Immunol. 2002;9(4):828-832.
- Olech M, Kuzmak J. Molecular characterization of small ruminant lentiviruses of subtype A5 detected in naturally infected but clinically healthy goats of Carpathian breed. Pathogens. 2020;9(12):992. https://doi.org/10.3390/pathogens9120992
- Zhang KS, He JJ, Liu YJ, Shang YJ, Liu XT. A seroprevalence survey of Maedi-Visna among twenty-four ovine floks from twelve regions of China. J Integr Agric. 2013;12(12):2321-2323. https://doi.org/10.1016/s2095-3119(13)60380-9
- Sun Y, Yang L, Wang CB, Dong H, Yang TY, Zhang C, et al. Serological investigation of caprine arthritis encephalitis and ovine progressive pneumoniina in 11 provinces of China. Chin Vet Sci. 2018;48(1):34-38.
- Tanaka M, Robinson BA, Chutiraka K, Geary CD, Reed JC, Lingappa JR. Mutations of conserved residues in the major homology region arrest assembling HIV-1 gag as a membrane-targeted intermediate containing genomic RNA and cellular proteins. J Virol. 2015;90(4):1944-1963. https://doi.org/10.1128/JVI.02698-15
- Ramirez H, Reina R, Amorena B, de Andres D, Martinez HA. Small ruminant lentiviruses: genetic variability, tropism and diagnosis. Viruses. 2013;5(4):1175-1207. https://doi.org/10.3390/v5041175
- Hotzel I, Cheevers WP. Sequence similarity between the envelope surface unit (SU) glycoproteins of primate and small ruminant lentiviruses. Virus Res. 2000;69(1):47-54. https://doi.org/10.1016/S0168-1702(00)00173-8
- Skraban R, Matthiasdottir S, Torsteinsdottir S, Agnarsdottir G, Gudmundsson B, Georgsson G, et al. Naturally occurring mutations within 39 amino acids in the envelope glycoprotein of Maedi-Visna virus alter the neutralization phenotype. J Virol. 1999;73(10):8064-8072. https://doi.org/10.1128/jvi.73.10.8064-8072.1999
- Carrozza ML, Mazzei M, Lacerenza D, Del Chiaro L, Giammarioli M, Marini C, et al. Seroconversion against SU5 derived synthetic peptides in sheep experimentally infected with different SRLV genotypes. Vet Microbiol. 2009;137(3-4):369-374. https://doi.org/10.1016/j.vetmic.2009.01.032