DOI QR코드

DOI QR Code

Successful treatment of recurrent subclinical mastitis in cows caused by enrofloxacin resistant bacteria by means of the sequential intramammary infusion of enrofloxacin HCl-2H2O and ceftiofur HCl: a clinical trial

  • Alfonseca-Silva, Edgar (Department of Microbiology and Immunology, School of Veterinary Medicine, National Autonomous University of Mexico) ;
  • Cruz-Villa, Juan Carlos (Department of Microbiology and Immunology, School of Veterinary Medicine, National Autonomous University of Mexico) ;
  • Gutierrez, Lilia (Department of Physiology and Pharmacology, School of Veterinary Medicine, National Autonomous University of Mexico) ;
  • Sumano, Hector (Department of Physiology and Pharmacology, School of Veterinary Medicine, National Autonomous University of Mexico)
  • Received : 2021.05.03
  • Accepted : 2021.08.29
  • Published : 2021.11.30

Abstract

Background: Recurrent subclinical mastitis (RScM) due to resistant bacteria has low clinical and bacteriological cure rates, often requiring the culling of cows. The sequential intramammary administration of enrofloxacin hydrochloride-dihydrate (enro-C) followed by ceftiofur HCl may be useful for treating these cases. Objectives: This study assessed the bacteriological and clinical cure-efficacies of the sequentially intramammary administration of enro-C, followed by ceftiofur HCl to treat RScM in Holstein/Friesian cows. Methods: This trial was conducted in a herd with a high prevalence of RScM, and 20 Holstein/Friesian cows were included: 45% suffering subclinical mastitis and 38.9% of the mammary quarters affected. Twenty-nine bacterial isolates in vitro resistant to enro-C were obtained (coagulase-negative Staphylococcus spp, 55.2%; Staphylococcus aureus, 27.6%; Escherichia coli, 6.9%; Streptococcus uberis, 6.9%; Corynebacterium bovis, 3.4%). Polymerase chain reaction-isolated the following genes linked to enro-C resistance: chromosomal (gyrA) and plasmid (aac(6')-lb-cr). The treatments were as follows: twice-daily intramammary infusions of enro-C (300 mg/10 mL) for 5 days. Cows clinically considered treatment failures were also treated with intramammary ceftiofur (125 mg/10 mL, twice daily for 5 days. The clinical and bacteriological cure rates were carried out when completing each treatment phase and at 14 and 21 days, aided by a California mastitis test, somatic cell count, and failure to identify the initially causative bacteria. Results: Enro-C achieved 65% clinical and bacteriological cure rates, and 100% cure rates were obtained after the rescue treatment with ceftiofur HCl. Conclusions: Outstanding clinical and bacteriological cure rates in cows affected by RScM were achieved with the consecutive intramammary infusions of enro-C, followed by ceftiofur HCl.

Keywords

Acknowledgement

This study was supported by Consejo Nacional de Ciencia y Tecnologia (CONACyT), Problemas Nacionales, Number 203.

References

  1. Izquierdo AC, Liera JEG, Cervantes RE, Castro JFI, Mancera EAV, Crispin RH, et al. Production of milk and bovine mastitis. J Adv Dairy Res. 2017;5(2):1-4.
  2. de Almeida IC, Viana MVG, Dietrich WS, Clipes RC, Donatele DM, Martins IVF, et al. Economic impact of bovine mastitis in Espirito Santo, Brazil. Int J Dev Res. 2021;11(2):44315-44319.
  3. Ashraf A, Imran M. Diagnosis of bovine mastitis: from laboratory to farm. Trop Anim Health Prod. 2018;50(6):1193-1202. https://doi.org/10.1007/s11250-018-1629-0
  4. Kumari T, Bhakat C, Choudhary RK. A review on sub clinical mastitis in dairy cattle. Int J Pure Appl Biosci. 2018;6(2):1291-1299.
  5. Kulkarni AG, Kaliwal BB. Bovine mastitis: a review. Int J Recent Sci Res. 2013;4(5):543-548.
  6. Ruegg PL. A 100-year review: mastitis detection, management, and prevention. J Dairy Sci. 2017;100(12):10381-10397. https://doi.org/10.3168/jds.2017-13023
  7. Sayeed MA, Rahman MA, Bari MS, Islam A, Rahman MM, Hoque MA. Prevalence of subclinical mastitis and associated risk factor at cow level in dairy farms in Jhenaidah. Adv Anim Vet Sci. 2020;8(2):112-121.
  8. Birhanu M, Leta S, Mamo G, Tesfaye S. Prevalence of bovine subclinical mastitis and isolation of its major causes in Bishoftu Town, Ethiopia. BMC Res Notes. 2017;10(1):767. https://doi.org/10.1186/s13104-017-3100-0
  9. Royster E, Wagner S. Treatment of mastitis in cattle. Vet Clin North Am Food Anim Pract. 2015;31(1):17-46. https://doi.org/10.1016/j.cvfa.2014.11.010
  10. Martinez PD, Cruz CA, Moreno FG. Resistance of causing bacteria of bovine mastitis in regard to common antimicrobials. Conexion Agropecuaria JDC. 2013;3(1):53-73.
  11. Jimenez Mejia R, Gudino Sosa LF, Aguilar Lopez JA, Loeza Lara PD. Molecular characterization of antibiotic resistant Escherichia coli isolated from bovine mastitis in Michoacan, Mexico. Rev Mex Cienc Pecu. 2017;8(4):387-396. https://doi.org/10.22319/rmcp.v8i4.4251
  12. Gutierrez L, Miranda-Calderon JE, Garcia-Gutierrez P, Sumano H. Physicochemical characterization and pharmacokinetics in broiler chickens of a new recrystallized enrofloxacin hydrochloride dihydrate. J Vet Pharmacol Ther. 2015;38(2):183-189. https://doi.org/10.1111/jvp.12153
  13. Sumano H, Ocampo L, Tapia G, Mendoza CJ, Gutierrez L. Pharmacokinetics of enrofloxacin HCl-2H 2 O (Enro-C) in dogs and pharmacokinetic/pharmacodynamic Monte Carlo simulations against Leptospira spp. J Vet Sci. 2018;19(5):600-607. https://doi.org/10.4142/jvs.2018.19.5.600
  14. Mendoza J, Gutierrez L, Gutierrez JA, Bustos FA, Sumano H. Pharmacokinetics of enrofloxacin HCl-2H2 O (ENRO-C), PK/PD, and Monte Carlo modeling vs. Leptospira spp. in cows. J Vet Pharmacol Ther. 2019;42(3):300-308. https://doi.org/10.1111/jvp.12748
  15. Viveros M, Lopez-Ordaz R, Gutierrez L, Miranda-Calderon JE, Sumano H. Efficacy assessment of an intramammary treatment with a new recrystallized enrofloxacin vs ceftiofur and parenteral enrofloxacin in dairy cows with nonsevere clinical mastitis. J Vet Pharmacol Ther. 2018;41(1):e1-e9. https://doi.org/10.1111/jvp.12441
  16. Truchetti G, Bouchard E, Descoteaux L, Scholl D, Roy JP. Efficacy of extended intramammary ceftiofur therapy against mild to moderate clinical mastitis in Holstein dairy cows: a randomized clinical trial. Can J Vet Res. 2014;78(1):31-37.
  17. Yang B, Lei Z, Zhao Y, Ahmed S, Wang C, Zhang S, et al. Combination susceptibility testing of common antimicrobials in vitro and the effects of sub-MIC of antimicrobials on Staphylococcus aureus biofilm formation. Front Microbiol. 2017;8:2125. https://doi.org/10.3389/fmicb.2017.02125
  18. Schalm OW, Noorlander DO. Experiments and observations leading to development of the California mastitis test. J Am Vet Med Assoc. 1957;130(5):199-204.
  19. Procedure for Collecting Milk Samples [Internet]. New Prague: National Mastitis Council; http://www.nmconline.org. Update 2004. Accessed 2020 Oct 26.
  20. Carter GR, Cole JR. Diagnostic Procedure in Veterinary Bacteriology and Mycology. 5th ed. Cambridge: Academic Press; 1990.
  21. Oram M, Kuroda R, Fisher LM. Escherichia coli DNA gyrase: genetic analysis of gyrA and gyrB mutations responsible for thermosensitive enzyme activity. FEBS Lett. 1992;312(1):61-65. https://doi.org/10.1016/0014-5793(92)81410-N
  22. Park CH, Robicsek A, Jacoby GA, Sahm D, Hooper DC. Prevalence in the United States of aac(6')-Ib-cr encoding a ciprofloxacin-modifying enzyme. Antimicrob Agents Chemother. 2006;50(11):3953-3955. https://doi.org/10.1128/AAC.00915-06
  23. Hillerton JE, Semmens JE. Comparison of treatment of mastitis by oxytocin or antibiotics following detection according to changes in milk electrical conductivity prior to visible signs. J Dairy Sci. 1999;82(1):93-98. https://doi.org/10.3168/jds.S0022-0302(99)75213-6
  24. Sharma N, Singh NK, Bhadwal MS. Relationship of somatic cell count and mastitis: an overview. AsianAustralas J Anim Sci. 2011;24(3):429-438.
  25. Galfi A, Radinovic M, Milanov D, Bobos S, Pajic M, Savic S, et al. Electrical conductivity of milk and bacteriological findings in cows with subclinical mastitis. J Anim Sci Biotechnol. 2015;31(4):533-541.
  26. Krishnamoorthy P, Satyanarayana ML, Shome BR. Coagulase negative Staphylococcal species mastitis: an overview. Res J Vet Sci. 2016;9(1):1-10.
  27. Pyorala S, Taponen S. Coagulase-negative staphylococci-emerging mastitis pathogens. Vet Microbiol. 2009;134(1-2):3-8. https://doi.org/10.1016/j.vetmic.2008.09.015
  28. Majlesi A, Kakhki RK, Mozaffari Nejad AS, Mashouf RY, Roointan A, Abazari M, et al. Detection of plasmid-mediated quinolone resistance in clinical isolates of Enterobacteriaceae strains in Hamadan, West of Iran. Saudi J Biol Sci. 2018;25(3):426-430. https://doi.org/10.1016/j.sjbs.2016.11.019
  29. Chavez-Jacobo VM, Ramirez-Diaz MI, Silva-Sanchez J, Cervantes C. Resistencia bacteriana a quinolonas: determinantes codificados en plasmidos. Rev Educ Bioquim. 2015;34(1):4-9.
  30. Ciesielczuk H, Hornsey M, Choi V, Woodford N, Wareham DW. Development and evaluation of a multiplex PCR for eight plasmid-mediated quinolone-resistance determinants. J Med Microbiol. 2013;62(Pt 12):1823-1827. https://doi.org/10.1099/jmm.0.064428-0
  31. Qin T, Qian H, Fan W, Ma P, Zhou L, Dong C, et al. Newest data on fluoroquinolone resistance mechanism of Shigella flexneri isolates in Jiangsu Province of China. Antimicrob Resist Infect Control. 2017;6(1):97. https://doi.org/10.1186/s13756-017-0249-1
  32. Correia S, Poeta P, Hebraud M, Capelo JL, Igrejas G. Mechanisms of quinolone action and resistance: where do we stand? J Med Microbiol. 2017;66(5):551-559. https://doi.org/10.1099/jmm.0.000475
  33. Blondeau JM, Fitch SD. Mutant prevention and minimum inhibitory concentration drug values for enrofloxacin, ceftiofur, florfenicol, tilmicosin and tulathromycin tested against swine pathogens Actinobacillus pleuropneumoniae, Pasteurella multocida and Streptococcus suis. PLoS One. 2019;14(1):e0210154. https://doi.org/10.1371/journal.pone.0210154
  34. Persson Y, Katholm J, Landin H, Mork MJ. Efficacy of enrofloxacin for the treatment of acute clinical mastitis caused by Escherichia coli in dairy cows. Vet Rec. 2015;176(26):673. https://doi.org/10.1136/vr.102667
  35. Suojala L, Simojoki H, Mustonen K, Kaartinen L, Pyorala S. Efficacy of enrofloxacin in the treatment of naturally occurring acute clinical Escherichia coli mastitis. J Dairy Sci. 2010;93(5):1960-1969. https://doi.org/10.3168/jds.2009-2462
  36. Kaartinen L, Salonen M, Alli L, Pyorala S. Pharmacokinetics of enrofloxacin after single intravenous, intramuscular and subcutaneous injections in lactating cows. J Vet Pharmacol Ther. 1995;18(5):357-362. https://doi.org/10.1111/j.1365-2885.1995.tb00604.x
  37. Ocampo PS, Lazar V, Papp B, Arnoldini M, Abel zur Wiesch P, Busa-Fekete R, et al. Antagonism between bacteriostatic and bactericidal antibiotics is prevalent. Antimicrob Agents Chemother. 2014;58(8):4573-4582. https://doi.org/10.1128/AAC.02463-14
  38. Owens WE, Nickerson SC, Ray CH. Efficacy of parenterally or intramammarily administered tilmicosin or ceftiofur against Staphylococcus aureus mastitis during lactation. J Dairy Sci. 1999;82(3):645-647. https://doi.org/10.3168/jds.S0022-0302(99)75279-3