DOI QR코드

DOI QR Code

Full-length ORF2 sequence-based genetic and phylogenetic characterization of Korean feline caliciviruses

  • Kim, Sung Jae (Department of Veterinary Microbiology, College of Veterinary Medicine, Seoul National University) ;
  • Kim, Cheongung (Department of Veterinary Microbiology, College of Veterinary Medicine, Seoul National University) ;
  • Chung, Hee Chun (Department of Veterinary Microbiology, College of Veterinary Medicine, Seoul National University) ;
  • Park, Yong Ho (Department of Veterinary Microbiology, College of Veterinary Medicine, Seoul National University) ;
  • Park, Kun Taek (Department of Biotechnology, Inje University)
  • 투고 : 2020.09.06
  • 심사 : 2021.02.21
  • 발행 : 2021.05.31

초록

Feline calicivirus (FCV) is a highly infectious pathogen in cats and widely distributed worldwide with high genetic variation. Full-length open reading frame 2 of 5 from recently isolated Korean FCV isolates were sequenced and compared with those of global isolates. The results of phylogenetic analysis supported dividing global FCV isolates into two genogroups (type I and II) and demonstrated the presence of genogroup II in Korea, indicating their geographic spread in East Asia. High sequence variations in region E of the FCV isolates emphasizes that a novel vaccine needs to be developed to induce protective immunity against various FCV strains.

키워드

과제정보

This work was supported by the 2018 Inje University Research Grant.

참고문헌

  1. Seal BS, Ridpath JF, Mengeling WL. Analysis of feline calicivirus capsid protein genes: identification of variable antigenic determinant regions of the protein. J Gen Virol. 1993;74(11):2519-2524. https://doi.org/10.1099/0022-1317-74-11-2519
  2. Sosnovtsev SV, Green KY. Identification and genomic mapping of the ORF3 and VPg proteins in feline calicivirus virions. Virology. 2000;277(1):193-203. https://doi.org/10.1006/viro.2000.0579
  3. Sun Y, Deng M, Peng Z, Hu R, Chen H, Wu B. Genetic and phylogenetic analysis of feline calicivirus isolates in China. Vet J. 2017;220:24-27. https://doi.org/10.1016/j.tvjl.2016.12.014
  4. Pereira JJ, Baumworcel N, Fioretti JM, Domingues CF, Moraes LF, Marinho RD, et al. Molecular characterization of feline calicivirus variants from multicat household and public animal shelter in Rio de Janeiro, Brazil. Braz J Microbiol. 2018;49(4):777-784. https://doi.org/10.1016/j.bjm.2018.01.003
  5. Hou J, Sanchez-Vizcaino F, McGahie D, Lesbros C, Almeras T, Howarth D, et al. European molecular epidemiology and strain diversity of feline calicivirus. Vet Rec. 2016;178(5):114-115. https://doi.org/10.1136/vr.103446
  6. Afonso MM, Pinchbeck GL, Smith SL, Daly JM, Gaskell RM, Dawson S, et al. A multi-national European cross-sectional study of feline calicivirus epidemiology, diversity and vaccine cross-reactivity. Vaccine. 2017;35(20):2753-2760. https://doi.org/10.1016/j.vaccine.2017.03.030
  7. Sato Y, Ohe K, Murakami M, Fukuyama M, Furuhata K, Kishikawa S, et al. Phylogenetic analysis of field isolates of feline calcivirus (FCV) in Japan by sequencing part of its capsid gene. Vet Res Commun. 2002;26(3):205-219. https://doi.org/10.1023/A:1015253621079
  8. Kim SJ, Park YH, Park KT. Development of a novel reverse transcription PCR and its application to field sample testing for feline calicivirus prevalence in healthy stray cats in Korea. J Vet Sci. 2020;21(5):e71. https://doi.org/10.4142/jvs.2020.21.e71
  9. Strimmer K, von Haeseler A. Likelihood-mapping: a simple method to visualize phylogenetic content of a sequence alignment. Proc Natl Acad Sci U S A. 1997;94(13):6815-6819. https://doi.org/10.1073/pnas.94.13.6815
  10. Minh BQ, Nguyen MA, von Haeseler A. Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol. 2013;30(5):1188-1195. https://doi.org/10.1093/molbev/mst024
  11. Kumar S, Tamura K, Jakobsen IB, Nei M. MEGA2: molecular evolutionary genetics analysis software. Bioinformatics. 2001;17(12):1244-1245. https://doi.org/10.1093/bioinformatics/17.12.1244
  12. Hsiao KL, Wang LY, Lin CL, Liu HF. New phylogenetic groups of torque teno virus identified in eastern Taiwan indigenes. PLoS One. 2016;11(2):e0149901. https://doi.org/10.1371/journal.pone.0149901
  13. Coyne KP, Edwards D, Radford AD, Cripps P, Jones D, Wood JL, et al. Longitudinal molecular epidemiological analysis of feline calicivirus infection in an animal shelter: a model for investigating calicivirus transmission within high-density, high-turnover populations. J Clin Microbiol. 2007;45(10):3239-3244. https://doi.org/10.1128/JCM.01226-07
  14. Zhaxybayeva O, Gogarten JP. Bootstrap, Bayesian probability and maximum likelihood mapping: exploring new tools for comparative genome analyses. BMC Genomics. 2002;3(1):4. https://doi.org/10.1186/1471-2164-3-4
  15. Radford AD, Willoughby K, Dawson S, McCracken C, Gaskell RM. The capsid gene of feline calicivirus contains linear B-cell epitopes in both variable and conserved regions. J Virol. 1999;73(10):8496-8502. https://doi.org/10.1128/jvi.73.10.8496-8502.1999
  16. Seal BS. Analysis of capsid protein gene variation among divergent isolates of feline calicivirus. Virus Res. 1994;33(1):39-53. https://doi.org/10.1016/0168-1702(94)90016-7