DOI QR코드

DOI QR Code

Identification of G Protein Coupled Receptors Expressed in Fat Body of Plutella Xylostella in Different Temperature Conditions

온도 차이에 따른 배추좀나방 유충 지방체에서 발현되는 G 단백질 연관 수용체의 동정

  • Kim, Kwang Ho (Crop Protection Division, Department of Agro-food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Lee, Dae-Weon (Department of Biosafety, Kyungsung University)
  • 김광호 (농촌진흥청 국립농업과학원 농산물안전성부 작물보호과) ;
  • 이대원 (경성대학교 생명보건대학 바이오안전학과)
  • Received : 2021.01.02
  • Accepted : 2021.01.18
  • Published : 2021.03.31

Abstract

BACKGROUND: G protein-coupled receptors (GPCRs) are widely distributed in various organisms. Insect GPCRs shown as in vertebrate GPCRs are membrane receptors that coordinate or involve in various physiological processes such as learning/memory, development, locomotion, circadian rhythm, reproduction, etc. This study aimed to identify GPCRs expressed in fat body and compare the expression pattern of GPCRs in different temperature conditions. METHODS AND RESULTS: To identify GPCRs genes and compare their expression in different temperature conditions, total RNAs of fat body in Plutella xylostella larva were extracted and the transcriptomes have been analyzed via next generation sequencing method. From the fat body transcriptomes, genes that belong to GPCR Family A, B, and F were identified such as opsin, gonadotropin-releasing hormone receptor, neuropeptide F (NPF) receptor, muthuselah (Mth), diuretic hormone receptor, frizzled, etc. Under low temperature, expressions of GPCRs such as C-C chemokine receptor (CCR), opsin, prolactin-releasing peptide receptor, substance K receptor, Mth-like receptor, diuretic hormone receptor, frizzled and stan were higher than those at 25℃. They are involved in immunity, feeding, movement, odorant recognition, diuresis, and development. In contrast to the control (25℃), at high temperature GPCRs including CCR, gonadotropin-releasing hormone receptor, moody, NPF receptor, neuropeptide B1 receptor, frizzled and stan revealed higher expression whose biological functions are related to immunity, blood-brain barrier formation, feeding, learning, and reproduction. CONCLUSION: Transcriptome of fat body can provide understanding the pools of GPCRs. Identifications of fat body GPCRs may contribute to develop new targets for the control of insect pests.

Keywords

References

  1. Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Roger AH et al. (2000) The genome sequence of Drosophila melanogaster. Science, 287(5461), 2185-2195. https://doi.org/10.1126/science.287.5461.2185.
  2. Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskern DR, Wincker P, Clark AG, Ribeiro JC et al. (2002) The genome sequence of the malaria mosquito Anopheles gambiae. Science, 298(5591), 129-149. https://doi.org/10.1126/science.1076181.
  3. Mita K, Kasahara M, Sasaki S, Nagayasu Y, Yamada T, Kanamori H, Namiki N, Kitagawa M, Tamashita H et al. (2004) The genome sequence of silkworm, Bombyx mori. DNA Research, 11(1), 27-35. https://doi.org/10.1093/dnares/11.1.27.
  4. Hummon AB, Richmond TA, Verleyen P, Barrerman G, Huybrechts J, Ewing MA, Vierstraete E, Rodriquez-Zas SL, Schoofs L et al. (2006) From the genome to the proteome: uncovering peptides in the Apis brain. Science, 314(5799), 647-649. https://doi.org/10.1126/science.1124128.
  5. Schoofs L, De Loof A, Van Hiel MB (2017) Neuropeptides as regulators of behavior in insects. Annual Review of Entomology, 62, 35-52. https://doi.org/10.1146/annurev-ento-031616-035500.
  6. Nassel DR, Winther AM (2010) Drosophila neuropeptides in regulation of physiology and behavior. Progress in Neurobiology, 92(1), 42-104. https://doi.org/10.1016/j.pneurobio.2010.04.010.
  7. Hanlon CD, Andrew DJ (2015) Outside-in signaling-a brief review of GPCR signaling with a focus on the Drosophila GPCR family. Journal of Cell Science, 128(19), 3533-3542. https://doi.org/10.1242/jcs.175158.
  8. Gulia-Nuss M, Nuss AB, Meyer JM, Sonenshine DE, Roe RM, Waterhouse RM, Sattelle DB, De La Fuente J, Ribeiro JM et al. (2016) Genomic insights into the Ixodes scapularis tick vector of Lyme disease. Nature Communications, 7(1), 1-13. https://doi.org/10.1038/ncomms10507.
  9. Elsik CG, Worley KC, Bennett AK, Beye M, Camara F, Childers CP, De Graaf DC, Debyser G, Deng J et al. (2014) Finding the missing honey bee genes: lessons learned from a genome upgrade. BMC Genomics, 15(1), 86. https://doi.org/10.1186/1471-2164-15-86.
  10. Xu G, Gu GX, Teng ZW, Wu SF, Huang J, Song QS, Ye GY, Fang Q (2016) Identification and expression profiles of neuropeptides and their G protein-coupled receptors in the rice stem borer Chilo suppressalis. Scientific Reports, 6, 28976. https://doi.org/10.1038/srep28976.
  11. Luttrell LM (2008) Reviews in molecular biology and biotechnology: transmembrane signaling by G protein-coupled receptors. Molecular Biotechnology, 39(3), 239-264. https://doi.org/10.1007/s12033-008-9031-1.
  12. Talekar N, Shelton A (1993) Biology, ecology, andmanagement of the diamondback moth. Annual Review of Entomology, 38(1), 275-301. https://doi.org/10.1146/annurev.en.38.010193.001423.
  13. Cho JM, Kim KJ, Kim SM, Han DS, Hur JH (2001) Diamondback moth (Plutella xylostella L.) resistance to organophosphorus and carbamate insecticides in Kangwon alpine vegetable crop lands. The Korean Journal of Pesticide Science, 5(1), 30-35.
  14. Hemingway J, Ranson H, Magill A, Kolaczinski J, Fornadel C, Gimnig J, Coetzee M, Simard F, Roch DK et al. (2016) Averting a malaria disaster: will insecticide resistance derail malaria control? The Lancet, 387(10029), 1785-1788. https://doi.org/10.1016/s0140-6736(15)00417-1.
  15. Sparks TC, Lorsbach BA (2017) Perspectives on the agrochemical industry and agrochemical discovery. Pest Management Science, 73(4), 672-677. https://doi.org/10.1002/ps.4457.
  16. Audsley N, Down RE (2015) G protein coupled receptors as targets for next generation pesticides. Insect Biochemistry and Molecular Biology, 67, 27-37. https://doi.org/10.1016/j.ibmb.2015.07.014.
  17. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114-2120. https://doi.org/10.1093/bioinformatics/btu170.
  18. Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B et al. (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nature Protocols, 8(8), 1494-1512. https://doi.org/10.1038/nprot.2013.084.
  19. Kim KH, Lee DW (2018) Analysis of gene expression in larval fat body of Plutella xylostella under high temperature. Korean Journal of Environmental Agriculture, 37(4), 324-332. https://doi.org/10.5338/kjea.2018.37.4.43.
  20. Meyer JM, Ejendal KF, Avramova LV, Garland-Kuntz EE, Giraldo-Calderon GI, Brust TF, Watts VJ, Hill CA (2012) A "genome-to-lead" approach for insecticide discovery: pharmacological characterization and screening of Aedes aegypti D(1)-like dopamine receptors. PLoS Neglected Tropical Diseases, 6(1), e1478. https://doi.org/10.1371/journal.pntd.0001478.
  21. Roeder T (2005) Tyramine and octopamine: ruling behavior and metabolism. Annual Review of Entomology, 50, 447-477. https://doi.org/10.1146/annurev.ento.50.071803.130404.
  22. Hauser F, Cazzamali G, Williamson M, Blenau W, Grimmelikhuijzen CJ (2006) A review of neurohormone GPCRs present in the fruitfly Drosophila melanogaster and the honey bee Apis mellifera. Progress in Neurobiology, 80(1), 1-19. https://doi.org/10.1016/j.pneurobio.2006.07.005.
  23. Fuchs S, Rende E, Crisanti A, Nolan T (2014) Disruption of aminergic signalling reveals novel compounds with distinct inhibitory effects on mosquito reproduction, locomotor function and survival. Scientific Reports, 4, 5526. https://doi.org/10.1038/srep05526.
  24. Kamhi JF, Arganda S, Moreau CS, Traniello JFA (2017) Origins of aminergic regulation of behavior in complex insect social systems. Frontiers in Systems Neuroscience, 11, 74. https://doi.org/10.3389/fnsys.2017.00074.
  25. Huser A, Eschment M, Gullu N, Collins KAN, Bopple K, Pankevych L, Rolsing E, Thum AS (2017) Anatomy and behavioral function of serotonin receptors in Drosophila melanogaster larvae. PLoS One, 12(8), e0181865. https://doi.org/10.1371/journal.pone.0181865.
  26. Kinney MP, Panting ND, Clark TM (2014) Modulation of appetite and feeding behavior of the larval mosquito Aedes aegypti by the serotonin-selective reuptake inhibitor paroxetine: shifts between distinct feeding modes and the influence of feeding status. Journal of Experimental Biology, 217(6), 935-943. https://doi.org/10.1242/jeb.094904.
  27. Thamm M, Balfanz S, Scheiner R, Baumann A, Blenau W (2010) Characterization of the 5-HT 1A receptor of the honeybee (Apis mellifera) and involvement of serotonin in phototactic behavior. Cellular and Molecular Life Sciences, 67(14), 2467-2479. https://doi.org/10.1007/s00018-010-0350-6.
  28. Balkwill F (2004) Cancer and the chemokine network. Nature Reviews Cancer, 4(7), 540-550. https://doi.org/10.1038/nrc1388.
  29. Zlotnik A, Yoshie O (2000) Chemokines: a new classification system and their role in immunity. Immunity, 12(2), 121-127. https://doi.org/10.1016/s1074-7613(00)80165-x.
  30. Moschovakis GL, Bubke A, Friedrichsen M, Ristenpart J, Back JW, Falk E, Kremmer CS, Forster R (2019) The chemokine receptor CCR7 is a promising target for rheumatoid arthritis therapy. Cellular & Molecular Immunology, 16(10), 791-799. https://doi.org/10.1038/s41423-018-0056-5.
  31. Hauser F, Grimmelikhuijzen CJP (2014) Evolution of the AKH/corazonin/ACP/GnRH receptor superfamily and their ligands in the Protostomia. General and Comparative Endocrinology, 209, 35-49. https://doi.org/10.1016/j.ygcen.2014.07.009.
  32. Tian S, Zandawala M, Beets I, Baytemur E, Slade SE, Scrivens JH, Elphick MR (2016) Urbilaterian origin of paralogous GnRH and corazonin neuropeptide signalling pathways. Scientific Reports, 6(1), 28788. https://doi.org/10.1038/srep28788.
  33. Veenstra JA (1989) Isolation and structure of corazonin, a cardioactive peptide from the American cockroach. FEBS Letters, 250(2), 231-234. https://doi.org/10.1016/0014-5793(89)80727-6.
  34. Oryan A, Wahedi A, Paluzzi JPV (2018) Functional characterization and quantitative expression analysis of two GnRH-related peptide receptors in the mosquito, Aedes aegypti. Biochemical and Biophysical Research Communications, 497(2), 550-557. https://doi.org/10.1016/j.bbrc.2018.02.088.
  35. Marchal E, Schellens S, Monjon E, Bruyninckx E, Marco HG, Gade G, Vanden Broeck J, Verlinden H (2018) Analysis of peptide ligand specificity of different insect adipokinetic hormone receptors. International Journal of Molecular Sciences, 19(2), 542. https://doi.org/10.3390/ijms19020542.
  36. Schwabe T, Bainton RJ, Fetter RD, Heberlein U, Gaul U (2005) GPCR signaling is required for blood-brain barrier formation in Drosophila. Cell, 123(1), 133-144. https://doi.org/10.1016/j.cell.2005.08.037.
  37. Brown MR, Crim JW, Arata RC, Cai HN, Chun C, Shen P (1999) Identification of a Drosophila brain-gut peptide related to the neuropeptide Y family. Peptides, 20(9), 1035-1042. https://doi.org/10.1016/s0196-9781(99)00097-2.
  38. Nassel DR, Wegener C (2011) A comparative review of short and long neuropeptide F signaling in invertebrates: any similarities to vertebrate neuropeptide Y signaling? Peptides, 32(6), 1335-1355. https://doi.org/10.1016/j.peptides.2011.03.013.
  39. Lingo PR, Zhao Z, Shen P (2007) Co-regulation of cold-resistant food acquisition by insulin- and neuropeptide Y-like systems in Drosophila melanogaster. Neuroscience, 148(2), 371-374. https://doi.org/10.1016/j.neuroscience.2007.06.010.
  40. Krashes MJ, DasGupta S, Vreede A, White B, Armstrong JD, Waddell S (2009) A neural circuit mechanism integrating motivational state with memory expression in Drosophila. Cell, 139(2), 416-427. https://doi.org/10.1016/j.cell.2009.08.035.
  41. Xu J, Li M, Shen P (2010) A G-protein-coupled neuropeptide Y-like receptor suppresses behavioral and sensory response to multiple stressful stimuli in Drosophila. Journal of Neuroscience, 30(7), 2504-2512. https://doi.org/10.1523/jneurosci.3262-09.2010.
  42. Hermann C, Saccon R, Senthilan PR, Domnik L, Dircksen H, Yoshii T, Helfrich-Forste C (2013) The circadian clock network in the brain of different Drosophila species. Journal of Comparative Neurology, 521(2), 367-388. https://doi.org/10.1002/cne.23178.
  43. Ament SA, Velarde RA, Kolodkin MH, Moyse D, Robinson GE (2011) Neuropeptide Y-like signalling and nutritionally mediated gene expression and behaviour in the honey bee. Insect Molecular Biology, 20(3), 335-345. https://doi.org/10.1111/j.1365-2583.2011.01068.
  44. Huang Y, Crim JW, Nuss AB, Brown MR (2011) Neuropeptide F and the corn earworm, Helicoverpa zea: a midgut peptide revisited. Peptides, 32(3), 483-492. https://doi.org/10.1016/j.peptides.2010.09.014.
  45. Setzu M, Biolchini M, Lilliu A, Manca M, Muroni P, Poddighe S, Bass C, Angioy AM, Nichols R (2012) Neuropeptide F peptides act through unique signaling pathways to affect cardiac activity. Peptides, 33(2), 230-239. https://doi.org/10.1016/j.peptides.2012.01.005.
  46. Garczynski SF, Crim JW, Brown MR (2005) Characterization of neuropeptide F and its receptor from the African malaria mosquito, Anopheles gambiae. Peptides, 26(1), 99-107. https://doi.org/10.1016/j.peptides.2004.07.014.
  47. Hauser F, Cazzamali G, Williamson M, Park Y, Li B, Tanaka Y, Predel R, Neupert S, Schachtner J et al. (2008) A genome-wide inventory of neurohormone GPCRs in the red flour beetle Tribolium castaneum. Frontiers in Neuroendocrinology, 29(1), 142-165. https://doi.org/10.1016/j.yfrne.2007.10.003.
  48. Yamanaka N, Yamamoto S, Zitnan D, Watanabe K, Kawada T, Satake H, Kaneko Y, Hiruma K, Tanaka Y et al. (2008) Neuropeptide receptor transcriptome reveals unidentified neuroendocrine pathways. PLoS One, 3(8), e3048. https://doi.org/10.1371/journal.pone.0003048.
  49. Fan Y, Sun P, Wang Y, He X, Deng X, Chen X, Zhang G, Chen X, Zhouet N (2010) The G protein-coupled receptors in the silkworm, Bombyx mori. Insect Biochemistry and Molecular Biology, 40(8), 581-591. https://doi.org/10.1016/j.ibmb.2010.05.005.
  50. Brody T, Cravchik A (2000) Drosophila melanogaster G protein-coupled receptors. The Journal of Cell Biology, 150(2), F83-F88. https://doi.org/10.1083/jcb.150.2.F83.
  51. Liu YJ, Yan S, Shen ZJ, Li Z, Zhang XF, Liu XM, Zhang QW, Liu XX (2018) The expression of three opsin genes and phototactic behavior of Spodoptera exigua (Lepidoptera: Noctuidae): evidence for visual function of opsin in phototaxis. Insect Biochemistry and Molecular Biology, 96, 27-35. https://doi.org/10.1016/j.ibmb.2018.03.006.
  52. Jiggins CD, Naisbit RE, Coe RL, Mallet J (2001) Reproductive isolation caused by colour pattern mimicry. Nature, 411(6835), 302-305. https://doi.org/10.1038/35077075.
  53. Tancharoen S, Sarker KP, Imamura T, Biswas KK, Matsushita K, Tatsuyama S, Travis J, Porempa J, Torii M et al. (2005) Neuropeptide release from dental pulp cells by RgpB via proteinase-activated receptor-2 signaling. The Journal of Immunology, 174(9), 5796-5804. https://doi.org/10.4049/jimmunol.174.9.5796.
  54. Clynen E, Husson SJ, Schoofs L (2009) Identification of new members of the (short) neuropeptide F family in locusts and Caenorhabditis elegans. Annals of The New York Academy of Sciences, 1163(1), 60-74. https://doi.org/10.1111/j.1749-6632.2008.03624.
  55. Garczynski SF, Brown MR, Crim JW (2006) Structural studies of Drosophila short neuropeptide F: occurrence and receptor binding activity. Peptides, 27(3), 575-582. https://doi.org/10.1016/j.peptides.2005.06.029.
  56. Dillen S, Verdonck R, Zels S, Van Wielendaele P, Vanden Broeck J (2014) Identification of the short neuropeptide F precursor in the desert locust: evidence for an inhibitory role of sNPF in the control of feeding. Peptides, 53, 134-139. https://doi.org/10.1016/j.peptides.2013.09.018.
  57. Wu SF, Yu HY, Jiang TT, Gao CF, Shen JL (2015) Superfamily of genes encoding G protein-coupled receptors in the diamondback moth Plutella xylostella (Lepidoptera: Plutellidae). Insect Molecular Biology, 24(4), 442-453. https://doi.org/10.1111/imb.12171.
  58. Kubli E, Bopp D (2012) Sexual behavior: how sex peptide flips the postmating switch of female flies. Current Biology, 22(13), R520-R522. https://doi.org/10.1016/j.cub.2012.04.058.
  59. Chen PS, Stumm-Zollinger E, Aigaki T, Balmer J, Bienz M, Bohlen P (1988) A male accessory gland peptide that regulates reproductive behavior of female D. melanogaster. Cell, 54(3), 291-298. https://doi.org/10.1016/0092-8674(88)90192-4.
  60. Isaac RE, Li C, Leedale AE, Shirras AD (2010) Drosophila male sex peptide inhibits siesta sleep and promotes locomotor activity in the post-mated female. Proceedings of the Royal Society B: Biological Sciences, 277(1678), 65-70. https://doi.org/10.1098/rspb.2009.1236.
  61. Domanitskaya EV, Liu H, Chen S, Kubli E (2007) The hydroxyproline motif of male sex peptide elicits the innate immune response in Drosophila females. The FEBS Journal, 274(21), 5659-5668. https://doi.org/10.1111/j.1742-4658.2007.06088.
  62. Fryxell KJ, Meyerowitz EM (1991) The evolution of rhodopsins and neurotransmitter receptors. Journal of Molecular Evolution, 33(4), 367-378. https://doi.org/10.1007/bf02102867.
  63. Li XJ, Wolfgang W, Wu YN, North RA, Forte M (1991) Cloning, heterologous expression and developmental regulation of a Drosophila receptor for tachykinin-like peptides. The EMBO Journal, 10(11), 3221-3229. https://doi.org/10.1002/j.1460-2075.1991.tb04885.x.
  64. Altstein M, Nassel DR (2010) Neuropeptide signaling in insects. Neuropeptide Systems as Targets for Parasite and Pest Control, 692, 155-165. https://doi.org/10.1007/978-1-4419-6902-6_8.
  65. He X, Zang J, Li X, Shao J, Yang H, Yang J, Huang H, Chen L, Shi L, Zhu C, Zhang G, Zhou N (2014) Activation of BNGR-A24 by direct interaction with tachykinin-related peptides from the silkworm Bombyx mori leads to the G(q)- and G(s)-coupled signaling cascades. Biochemistry, 53(42), 6667-6678. https://doi.org/10.1021/bi5007207.
  66. Gui S, Jiang H, Xu L, Pei Y, Liu X, Smagghea G, Wang J (2017) Role of a tachykinin-related peptide and its receptor in modulating the olfactory sensitivity in the oriental fruit fly, Bactrocera dorsalis (Hendel). Insect Biochemistry and Molecular Biology, 80, 71-78. https://doi.org/10.1016/j.ibmb.2016.12.002.
  67. West AP, Llamas LL, Snow PM, Benzer S, Bjorkman PJ (2001) Crystal structure of the ectodomain of Methuselah, a Drosophila G protein-coupled receptor associated with extended lifespan. Proceedings of the National Academy of Sciences, 98(7), 3744-3749. https://doi.org/10.1073/pnas.051625298.
  68. Patel MV, Hallal DA, Jones JW, Bronner DN, Zein R, Caravas J, Husain Z, Friedrich M, Vanberkum MFA (2012) Dramatic expansion and developmental expression diversification of the Methuselah gene family during recent Drosophila evolution. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 318(5), 368-387. https://doi.org/10.1002/jez.b.22453.
  69. Lin YJ, Seroude L, Benzer S (1998) Extended life-span and stress resistance in the Drosophila Mutant methuselah. Science, 282(5390), 943-946. https://doi.org/10.1126/science.282.5390.943.
  70. Kidd T, Abu-Shumays R, Katzen A, Sisson JC, Jimenez G, Pinchin S, Sullivan W, Ish-Horowicz D (2005) The ε -subunit of mitochondrial ATP synthase is required for normal spindle orientation during the Drosophila embryonic divisions. Genetics, 170(2), 697-708. https://doi.org/10.1534/genetics.104.037648.
  71. Hill CA, Fox AN, Pitts RJ, Kent LB, Tan PL, Chrystal MA, Cravchik A, Collins FH, Robertson HM et al. (2002) G protein-coupled receptors in Anopheles gambiae. Science, 298, 176-178. https://doi.org/10.1126/science.1076196.
  72. Li C, Zhang Y, Yun X, Wang Y, Sang M, Liu X, Hu X, Li B (2014) Methuselah-like genes affect development, stress resistance, lifespan and reproduction in Tribolium castaneum. Insect Molecular Biology, 23(5), 587-597. https://doi.org/10.1111/imb.12107.
  73. Zhang Z, Wang H, Hao C, Zhang W, Yang M, Chang Y, Li M (2016) Identification, characterization and expression of methuselah-like genes in Dastarcus helophoroides (Coleoptera: Bothrideridae). Genes, 7(10), 91. https://doi.org/10.3390/genes7100091.
  74. Regard JB, Sato IT, Coughlin SR (2009) Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3), 561-571. https://doi.org/10.1016/j.cell.2008.08.040.
  75. Sahbaz BD, Iyison NB (2019) Prediction and expression analysis of G protein-coupled receptors in the laboratory stick insect, Carausius morosus. Turkish Journal of Biology, 43(1), 77-88. https://doi.org/10.3906/biy-1809-27.
  76. Coast GM, Orchard I, Phillips JE, Schooley DA (2002) Insect diuretic and antidiuretic hormones. Advances in Insect Physiology, 29, 279-409. https://doi.org/10.1016/S0065-2806(02)29004-9.
  77. Furuya K, Milchak RJ, Schegg KM, Zhang J, Tobe SS, Coast GM, Schooley DA (2000) Cockroach diuretic hormones: characterization of a calcitonin-like peptide in insects. Proceedings of the National Academy of Sciences, 97(12), 6469-6474. https://doi.org/10.1073/pnas.97.12.6469.
  78. Johnson EC, Shafer OT, Trigg JS, Park J, Schooley DA, Dow JA, Taghert PH (2005) A novel diuretic hormone receptor in Drosophila: evidence for conservation of CGRP signaling. Journal of Experimental Biology, 208(7), 1239-1246. https://doi.org/10.1242/jeb.01529.
  79. Zandawala M, Li S, Hauser F, Grimmelikhuijzen CJ, Orchard I (2013) Isolation and functional characterization of calcitonin-like diuretic hormone receptors in Rhodnius prolixus. PLoS One, 8(11), e82466. https://doi.org/10.1371/journal.pone.0082466.
  80. Johnson EC, Bohn LM, Taghert PH (2004) Drosophila CG8422 encodes a functional diuretic hormone receptor. Journal of Experimental Biology, 207(5), 743-748. https://doi.org/10.1242/jeb.00818.
  81. Apone F, Ruggiero A, Tortora A, Tito A, Grimaldi MR, Arciello S, Andrenacci D, Di Lelio I, Colucci G (2014) Targeting the diuretic hormone receptor to control the cotton leafworm, Spodoptera littoralis. Journal of Insect Science, 14(1), 87. https://doi.org/10.1093/jis/14.1.87.
  82. Boutros M, Mihaly J, Bouwmeester T, Mlodzik M (2000) Signaling specificity by Frizzled receptors in Drosophila. Science, 288(5472), 1825-1828. https://doi.org/10.1126/science.288.5472.1825.
  83. Malbon CC (2004) Frizzleds: new members of the superfamily of G-protein-coupled receptors. Frontiers in Bioscience: A Journal and Virtual Library, 9, 1048-1058. https://doi.org/10.2741/1308.
  84. Organisti C, Hein I, Grunwald Kadow IC, Suzuki T (2015) Flamingo, a seven-pass transmembrane cadherin, cooperates with Netrin/Frazzled in Drosophila midline guidance. Genes to Cells, 20(1), 50-67. https://doi.org/10.1111/gtc.12202.
  85. Wasserscheid I, Thomas U, Knust E (2007) Isoform-specific interaction of Flamingo/Starry Night with excess Bazooka affects planar cell polarity in the Drosophila wing. Developmental Dynamics, 236(4), 1064-1071. https://doi.org/10.1002/dvdy.21089.