DOI QR코드

DOI QR Code

Current Calculation Simulation Model for Smartgrid-based Energy Distribution System Operation

스마트 그리드 기반 에너지 시스템 운영을 위한 배전계통 조류계산 시뮬레이션 모델 개발

  • 배희선 (한국과학기술원 산업 및 시스템공학과) ;
  • 신승재 (한국과학기술원 산업 및 시스템공학과) ;
  • 문일철 (한국과학기술원 산업 및 시스템공학과) ;
  • 배장원
  • Received : 2020.12.26
  • Accepted : 2021.02.25
  • Published : 2021.03.31

Abstract

The future energy consumption pattern will show a very different pattern from the present due to the increase of distributed power sources such as renewable energy and the birth of the concept of prosumers, etc. Accordingly, it can be predicted that the direction of establishment of an appropriate production and supply plan considering the stability and consumption efficiency of the entire power grid will also be different from now. This paper proposes a simulation model that can test a new operational strategy when faced with a number of possible future environments. Through the proposed model, it is possible to simulate and analyze power consumed and supplied in a future Smart Grid environment, in which a large amount of new concepts including energy storage service (ESS) and distributed energy resources (DER) will be added. In particular, it is possible to model complex systems structurally by using DEVS formalism among the ABM (Agent-Based Model) methodologies that can model decision-making for each agent existing in the grid, and several factors can be easily added to the grid. The simulation model was verified using given dataset in the current situation, and scenario analysis was performed by simply adding an ESS, one of the main elements of the smart grid, to the model.

미래 에너지 소비 패턴은 신재생 에너지 등의 분산 전원의 증가와 프로슈머의 탄생 등으로 현재와는 크게 다른 양상을 보일 것이다. 이에 따라서 전력망 전체의 안정성 및 소비 효율을 고려한 적절한 생산 및 공급 계획 수립의 방향성 역시 지금과는 상이할 것으로 예측할 수 있다. 본 논문은 앞으로 발생할 수 있는 여러 환경에 직면하였을 때 새로운 운영 전략을 시험할 수 있는 시뮬레이션 모델을 제안한다. 제안된 모델을 통해서 에너지 저장 장치, 에너지 분산자원과 같은 새로운 개념이 다량 추가될 미래 스마트 그리드(Smart Grid) 환경에서 소비되고 공급되는 전력을 모의하고 분석하는 기능을 수행할 수 있다. 특히, 그리드에 존재하는 각 요인(Agent)별 의사결정을 모델링할 수 있는 ABM(Agent-Based Model) 방법론 중 DEVS 형식론을 이용하여 복잡한 시스템을 구조적으로 모델링하고, 여러 요인들을 그리드에 쉽게 추가할 수 있도록 하였다. 본 시뮬레이션 모델은 현 상황에서 주어진 데이터셋을 이용하여 검증하였고, 추가로 스마트 그리드의 주요 요소 중 하나인 에너지 저장 장치(ESS)를 본 모델에 간단하게 추가함으로써 시나리오 분석을 시행하였다.

Keywords

References

  1. Tuballa, M. L., & Abundo, M. L. (2016), "A review of the development of Smart Grid technologies", Renewable and Sustainable Energy Reviews, 59, pp. 710-725. https://doi.org/10.1016/j.rser.2016.01.011
  2. Jorgensen, J. M., Sorensen, S. H., Behnke, K., & Eriksen, P. B. (2011, July), "Ecogrid EU-A prototype for european smart grids", In 2011 IEEE Power and Energy Society General Meeting, pp. 1-7, IEEE.
  3. Kim, S., Lee, H., Kim, H., Jang, D. H., Kim, H. J., Hur, J., ... & Hur, K. (2018), "Improvement in policy and proactive interconnection procedure for renewable energy expansion in South Korea", Renewable and Sustainable Energy Reviews, 98, 150-162. https://doi.org/10.1016/j.rser.2018.09.013
  4. Sasikala, S. P., Jeong, G. H., Yun, T., & Kim, S. O. (2019), "A perspective on R&D status of energy storage systems in South Korea", Energy Storage Materials, 23, pp.154-158. https://doi.org/10.1016/j.ensm.2019.05.017
  5. Park, J. K., & Kim, Y. J. (2005, June), "Status and perspective of electric power industry in Korea", In IEEE Power Engineering Society General Meeting, pp. 2896-2899, IEEE.
  6. Choi, S., & Min, S. W. (2018), "Optimal scheduling and operation of the ESS for prosumer market environment in grid-connected industrial complex", IEEE Transactions on Industry Applications, 54(3), pp.1949-1957. https://doi.org/10.1109/tia.2018.2794330
  7. Monteiro, V., Goncalves, H., & Afonso, J. L. (2011, October), "Impact of Electric Vehicles on power quality in a Smart Grid context", In 11th International Conference on Electrical Power Quality and Utilisation, pp. 1-6, IEEE.
  8. Rohjans, S., Lehnhoff, S., Schutte, S., Andren, F., & Strasser, T. (2014, June), "Requirements for smart grid simulation tools", In 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE), pp. 1730-1736, IEEE.
  9. Cardenas, J. A., Gemoets, L., Rosas, J. H. A., & Sarfi, R. (2014). A literature survey on Smart Grid distribution: an analytical approach. Journal of Cleaner Production, 65, 202-216. https://doi.org/10.1016/j.jclepro.2013.09.019
  10. Ketter, W., Collins, J., & Reddy, P. (2013), "Power TAC: A competitive economic simulation of the smart grid", Energy Economics, 39, pp.262-270. https://doi.org/10.1016/j.eneco.2013.04.015
  11. Concepcion, A. I., & Zeigler, B. P. (1988), "DEVS formalism: A framework for hierarchical model development", IEEE Transactions on Software Engineering, 14(2), pp. 228-241. https://doi.org/10.1109/32.4640
  12. Zeigler, Bernard P., Tag Gon Kim, and Herbert Praehofer, (2000), Theory of Modeling and Simulation.
  13. Karnouskos, Stamatis, and Thiago Nass De Holanda (2009), "Simulation of a smart grid city with software agents", 2009 Third UKSim European Symposium on Computer Modeling and Simulation.
  14. Ramchurn, Sarvapali D., et al., (2011), "Agent-based control for decentralised demand side management in the smart grid", The 10th International Conference on Autonomous Agents and Multiagent Systems-Volume 1.
  15. Oliveira, P., Pinto, T., Morais, H., & Vale, Z. (2012), "MASGriP-a multi-agent smart grid simulation platform", In 2012 IEEE Power and Energy Society General Meeting, pp. 1-8.
  16. 한국에너지공단 신재생에너지센터 신재생에너지정책실(2020), 2019년 신.재생에너지 보급통계 잠정치(2020년 공표) 결과 요약
  17. Kumar, A., Tiwari, L., & Somwanshi, D. (2018), "Design architecture and optimization of multi agent based smart grid", In 2018 IEEMA Engineer Infinite Conference (eTechNxT), pp. 1-4.
  18. Moehle, Nicholas, et al. (2019), "Dynamic energy management", Large Scale Optimization in Supply Chains and Smart Manufacturing. Springer, Cham, 2019. pp.69-126.
  19. Jarrah, M. (2016), "Modeling and simulation of renewable energy sources in smart grid using DEVS formalism", Procedia Computer Science, 83, pp.642-647. https://doi.org/10.1016/j.procs.2016.04.144
  20. Changho Sung and Tag Gon Kim (2012), "Collaborative Modeling Process for Development of Domain-Specific Discrete Event Simulation Systems", IEEE Transactions on Systems, Man, and Cybernetics - Part C: Applications and Reviews, Vol. 42, No. 4, pp. 532-546. https://doi.org/10.1109/TSMCC.2011.2135850