DOI QR코드

DOI QR Code

Diffusion-based determination of protein homodimerization on reconstituted membrane surfaces

  • Jepson, Tyler A. (Department of Chemistry, Colorado State University) ;
  • Chung, Jean K. (Department of Chemistry, Colorado State University)
  • Received : 2020.10.20
  • Accepted : 2020.12.27
  • Published : 2021.03.31

Abstract

The transient interactions between cellular components, particularly on membrane surfaces, are critical in the proper function of many biochemical reactions. For example, many signaling pathways involve dimerization, oligomerization, or other types of clustering of signaling proteins as a key step in the signaling cascade. However, it is often experimentally challenging to directly observe and characterize the molecular mechanisms such interactions-the greatest difficulty lies in the fact that living cells have an unknown number of background processes that may or may not participate in the molecular process of interest, and as a consequence, it is usually impossible to definitively correlate an observation to a well-defined cellular mechanism. One of the experimental methods that can quantitatively capture these interactions is through membrane reconstitution, whereby a lipid bilayer is fabricated to mimic the membrane environment, and the biological components of interest are systematically introduced, without unknown background processes. This configuration allows the extensive use of fluorescence techniques, particularly fluorescence fluctuation spectroscopy and single-molecule fluorescence microscopy. In this review, we describe how the equilibrium diffusion of two proteins, K-Ras4B and the PH domain of Bruton's tyrosine kinase (Btk), on fluid lipid membranes can be used to determine the kinetics of homodimerization reactions.

Keywords

References

  1. Eyster KM (2007) The membrane and lipids as integral participants in signal transduction: lipid signal transduction for the non-lipid biochemist. Adv Physiol Educ 31, 5-16 https://doi.org/10.1152/advan.00088.2006
  2. Groves JT and Kuriyan J (2010) Molecular mechanisms in signal transduction at the membrane. Nat Struct Mol Biol 17, 659-665 https://doi.org/10.1038/nsmb.1844
  3. Cho W and Stahelin RV (2005) Membrane-protein interactions in cell signaling and membrane trafficking. Annu Rev Biophys Biomol Struct 34, 119-151 https://doi.org/10.1146/annurev.biophys.33.110502.133337
  4. Kasai RS, Ito SV, Awane RM, Fujiwara TK and Kusumi A (2018) The Class-A GPCR Dopamine D2 Receptor Forms Transient Dimers Stabilized by Agonists: Detection by Single-Molecule Tracking. Cell Biochem Biophys 76, 29-37 https://doi.org/10.1007/s12013-017-0829-y
  5. Freed DM, Bessman NJ, Kiyatkin A et al (2017) EGFR Ligands Differentially Stabilize Receptor Dimers to Specify Signaling Kinetics. Cell 171, 683-695.e618 https://doi.org/10.1016/j.cell.2017.09.017
  6. Prehoda KE, Scott JA, Mullins RD and Lim WA (2000) Integration of multiple signals through cooperative regulation of the N-WASP-Arp2/3 complex. Science 290, 801-806 https://doi.org/10.1126/science.290.5492.801
  7. Scott JD and Pawson T (2009) Cell signaling in space and time: where proteins come together and when they're apart. Science 326, 1220-1224 https://doi.org/10.1126/science.1175668
  8. Hunter T (2009) Tyrosine phosphorylation: thirty years and counting. Curr Opin Cell Biol 21, 140-146 https://doi.org/10.1016/j.ceb.2009.01.028
  9. Lemmon MA (2008) Membrane recognition by phospholipid-binding domains. Nat Rev Mol Cell Biol 9, 99-111 https://doi.org/10.1038/nrm2328
  10. Newton AC (2010) Protein kinase C: poised to signal. Am J Physiol Endocrinol Metab 298, E395-402 https://doi.org/10.1152/ajpendo.00477.2009
  11. Iversen L et al (2014) Molecular kinetics. Ras activation by SOS: allosteric regulation by altered fluctuation dynamics. Science 345, 50-54 https://doi.org/10.1126/science.1250373
  12. Vahey MD and Fletcher DA (2014) The biology of boundary conditions: cellular reconstitution in one, two, and three dimensions. Curr Opin Cell Biol 26, 60-68 https://doi.org/10.1016/j.ceb.2013.10.001
  13. Chan YH and Boxer SG (2007) Model membrane systems and their applications. Curr Opin Chem Biol 11, 581-587 https://doi.org/10.1016/j.cbpa.2007.09.020
  14. Chung M, Lowe RD, Chan YH, Ganesan PV and Boxer SG (2009) DNA-tethered membranes formed by giant vesicle rupture. J Struct Biol 168, 190-199 https://doi.org/10.1016/j.jsb.2009.06.015
  15. Groves JT and Dustin ML (2003) Supported planar bilayers in studies on immune cell adhesion and communication. J Immunol Methods 278, 19-32 https://doi.org/10.1016/S0022-1759(03)00193-5
  16. Lin WC, Yu CH, Triffo S and Groves JT (2010) Supported membrane formation, characterization, functionalization, and patterning for application in biological science and technology. Curr Protoc Chem Biol 2, 235-269 https://doi.org/10.1002/9780470559277.ch100131
  17. Kaizuka Y and Groves JT (2006) Hydrodynamic damping of membrane thermal fluctuations near surfaces imaged by fluorescence interference microscopy. Phys Rev Lett 96, 118101 https://doi.org/10.1103/PhysRevLett.96.118101
  18. Buckles TC, Ziemba BP, Masson GR, Williams RL and Falke JJ (2017) Single-Molecule Study Reveals How Receptor and Ras Synergistically Activate PI3Kα and PIP. Biophys J 113, 2396-2405 https://doi.org/10.1016/j.bpj.2017.09.018
  19. Ziemba BP, Burke JE, Masson G, Williams RL and Falke JJ (2016) Regulation of PI3K by PKC and MARCKS: Single-Molecule Analysis of a Reconstituted Signaling Pathway. Biophys J 110, 1811-1825 https://doi.org/10.1016/j.bpj.2016.03.001
  20. Ziemba BP and Falke JJ (2018) A PKC-MARCKS-PI3K regulatory module links Ca2+ and PIP3 signals at the leading edge of polarized macrophages. PLoS One 13, e0196678 https://doi.org/10.1371/journal.pone.0196678
  21. Case LB, Ditlev JA and Rosen MK (2019) Regulation of Transmembrane Signaling by Phase Separation. Annu Rev Biophys 48, 465-494 https://doi.org/10.1146/annurev-biophys-052118-115534
  22. Kalb E, Frey S and Tamm LK (1992) Formation of supported planar bilayers by fusion of vesicles to supported phospholipid monolayers. Biochim Biophys Acta 1103, 307-316 https://doi.org/10.1016/0005-2736(92)90101-Q
  23. Ziemba BP and Falke JJ (2013) Lateral diffusion of peripheral membrane proteins on supported lipid bilayers is controlled by the additive frictional drags of (1) bound lipids and (2) protein domains penetrating into the bilayer hydrocarbon core. Chem Phys Lipids 172-173, 67-77 https://doi.org/10.1016/j.chemphyslip.2013.04.005
  24. Humpolickova J, Gielen E, Benda A et al (2006) Probing diffusion laws within cellular membranes by Z-scan fluorescence correlation spectroscopy. Biophys J 91, L23-25 https://doi.org/10.1529/biophysj.106.089474
  25. Chung JK, Lee YK, Denson JP et al (2018) K-Ras4B Remains Monomeric on Membranes over a Wide Range of Surface Densities and Lipid Compositions. Biophys J 114, 137-145 https://doi.org/10.1016/j.bpj.2017.10.042
  26. Chung JK, Nocka LM, Decker A et al (2019) Switch-like activation of Bruton's tyrosine kinase by membrane-mediated dimerization. Proc Natl Acad Sci U S A 116, 10798-10803 https://doi.org/10.1073/pnas.1819309116
  27. Saffman PG and Delbruck M (1975) Brownian motion in biological membranes. Proc Natl Acad Sci U S A 72, 3111-3113 https://doi.org/10.1073/pnas.72.8.3111
  28. Gambin Y, Lopez-Esparza R, Reffay M et al (2006) Lateral mobility of proteins in liquid membranes revisited. Proc Natl Acad Sci U S A 103, 2098-2102 https://doi.org/10.1073/pnas.0511026103
  29. Domanov YA, Aimon S, Toombes GES et al (2011) Mobility in geometrically confined membranes. Proc Natl Acad Sci U S A 108, 12605-12610 https://doi.org/10.1073/pnas.1102646108
  30. Lin WC, Iversen L, Tu HL et al (2014) H-Ras forms dimers on membrane surfaces via a protein-protein interface. Proc Natl Acad Sci U S A 111, 2996-3001 https://doi.org/10.1073/pnas.1321155111
  31. Knight JD, Lerner MG, Marcano-Velazquez JG, Pastor RW and Falke JJ (2010) Single molecule diffusion of membranebound proteins: window into lipid contacts and bilayer dynamics. Biophys J 99, 2879-2887 https://doi.org/10.1016/j.bpj.2010.08.046
  32. Magde D, Elson EL and Webb WW (1974) Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers 13, 29-61 https://doi.org/10.1002/bip.1974.360130103
  33. Kim SA, Heinze KG and Schwille P (2007) Fluorescence correlation spectroscopy in living cells. Nat Methods 4, 963-973 https://doi.org/10.1038/nmeth1104
  34. Ries J and Schwille P (2012) Fluorescence correlation spectroscopy. Bioessays 34, 361-368javascript:checkRefBr('', 'next'); https://doi.org/10.1002/bies.201100111
  35. Schwille P, Kummer S, Heikal AA, Moerner WE and Webb WW (2000) Fluorescence correlation spectroscopy reveals fast optical excitation-driven intramolecular dynamics of yellow fluorescent proteins. Proc Natl Acad Sci U S A 97, 151-156 https://doi.org/10.1073/pnas.97.1.151
  36. Lee YK, Low-Nam ST, Chung JK et al (2017) Mechanism of SOS PR-domain autoinhibition revealed by single-molecule assays on native protein from lysate. Nat Commun 8, 15061 https://doi.org/10.1038/ncomms15061
  37. Saxton MJ and Jacobson K (1997) Single-particle tracking: applications to membrane dynamics. Annu Rev Biophys Biomol Struct 26, 373-399 https://doi.org/10.1146/annurev.biophys.26.1.373
  38. Saxton MJ (1997) Single-particle tracking: the distribution of diffusion coefficients. Biophys J 72, 1744-1753 https://doi.org/10.1016/S0006-3495(97)78820-9
  39. Tinevez JY, Perry N, Schindelin J et al (2017) TrackMate: An open and extensible platform for single-particle tracking. Methods 115, 80-90 https://doi.org/10.1016/j.ymeth.2016.09.016
  40. Huang WYC, Chiang HK and Groves JT (2017) Dynamic Scaling Analysis of Molecular Motion within the LAT:Grb2: SOS Protein Network on Membranes. Biophys J 113, 1807-1813 https://doi.org/10.1016/j.bpj.2017.08.024
  41. Chung JK, Lee YK, Lam HY and Groves JT (2016) Covalent Ras Dimerization on Membrane Surfaces through Photosensitized Oxidation. J Am Chem Soc 138, 1800-1803 https://doi.org/10.1021/jacs.5b12648
  42. McCormick F (2015) KRAS as a Therapeutic Target. Clin Cancer Res 21, 1797-1801 https://doi.org/10.1158/1078-0432.CCR-14-2662
  43. Simanshu DK, Nissley DV and McCormick F (2017) RAS Proteins and Their Regulators in Human Disease. Cell 170, 17-33 https://doi.org/10.1016/j.cell.2017.06.009
  44. Bollag G and McCormick F (1991) Regulators and effectors of ras proteins. Annu Rev Cell Biol 7, 601-632 https://doi.org/10.1146/annurev.cb.07.110191.003125
  45. Stephen AG, Esposito D, Bagni RK and McCormick F (2014) Dragging ras back in the ring. Cancer Cell 25, 272-281 https://doi.org/10.1016/j.ccr.2014.02.017
  46. Plowman SJ, Muncke C, Parton RG and Hancock JF (2005) H-ras, K-ras, and inner plasma membrane raft proteins operate in nanoclusters with differential dependence on the actin cytoskeleton. Proc Natl Acad Sci U S A 102, 15500-15505 https://doi.org/10.1073/pnas.0504114102
  47. Prior IA and Hancock JF (2012) Ras trafficking, localization and compartmentalized signalling. Semin Cell Dev Biol 23, 145-153 https://doi.org/10.1016/j.semcdb.2011.09.002
  48. Ambrogio C, Kohler J, Zhou ZW et al (2018) KRAS Dimerization Impacts MEK Inhibitor Sensitivity and Oncogenic Activity of Mutant KRAS. Cell 172, 857-868.e815 https://doi.org/10.1016/j.cell.2017.12.020
  49. Nan X, Tamguney TM, Collisson EA et al (2015) Ras-GTP dimers activate the Mitogen-Activated Protein Kinase (MAPK) pathway. Proc Natl Acad Sci U S A 112, 7996-8001 https://doi.org/10.1073/pnas.1509123112
  50. Garcia E, Cobbert J, Lavoie H et al (2017) Inhibition of RAS function through targeting an allosteric regulatory site. Nat Chem Biol 13, 62-68 https://doi.org/10.1038/nchembio.2231
  51. Spencer-Smith R, Li L, Prasad S, Koide A, Koide S, O'Bryan JP (2019) Targeting the α4-α5 interface of RAS results in multiple levels of inhibition. Small GTPases 10, 378-387 https://doi.org/10.1080/21541248.2017.1333188
  52. Chen M, Peters A, Huang T and Nan X (2016) Ras Dimer Formation as a New Signaling Mechanism and Potential Cancer Therapeutic Target. Mini Rev Med Chem 16, 391-403 https://doi.org/10.2174/1389557515666151001152212
  53. Muratcioglu S, Chavan TS, Freed BC et al (2015) GTPD-ependent K-Ras Dimerization. Structure 23, 1325-1335 https://doi.org/10.1016/j.str.2015.04.019
  54. Muratcioglu S, Aydin C, Odabasi E et al (2020) Oncogenic K-Ras4B Dimerization Enhances Downstream Mitogen-activated Protein Kinase Signaling. J Mol Biol 432, 1199-1215 https://doi.org/10.1016/j.jmb.2020.01.002
  55. Kovrigina EA, Galiakhmetov AR and Kovrigin EL (2015) The Ras G Domain Lacks the Intrinsic Propensity to Form Dimers. Biophys J 109, 1000-1008 https://doi.org/10.1016/j.bpj.2015.07.020
  56. Guldenhaupt J, Rudack T, Bachler P et al (2012) N-Ras forms dimers at POPC membranes. Biophys J 103, 1585-1593 https://doi.org/10.1016/j.bpj.2012.08.043
  57. Gillette WK, Esposito D, Blanco MA et al (2015) Farnesylated and methylated KRAS4b: high yield production of protein suitable for biophysical studies of prenylated protein-lipid interactions. Sci Rep 5, 15916 https://doi.org/10.1038/srep15916
  58. Pai EF, Kabsch W, Krengel U, Holmes KC, John J, Wittinghofer A (1989) Structure of the guanine-nucleotide-binding domain of the Ha-ras oncogene product p21 in the triphosphate conformation. Nature 341, 209-214 https://doi.org/10.1038/341209a0
  59. Rip J, Van Der Ploeg EK, Hendriks RW and Corneth OBJ (2018) The Role of Bruton's Tyrosine Kinase in Immune Cell Signaling and Systemic Autoimmunity. Crit Rev Immunol 38, 17-62 https://doi.org/10.1615/CritRevImmunol.2018025184
  60. Joseph RE, Wales TE, Fulton DB, Engen JR and Andreotti AH (2017) Achieving a Graded Immune Response: BTK Adopts a Range of Active/Inactive Conformations Dictated by Multiple Interdomain Contacts. Structure 25, 1481-1494.e1484 https://doi.org/10.1016/j.str.2017.07.014
  61. Scharenberg AM, Humphries LA and Rawlings DJ (2007) Calcium signalling and cell-fate choice in B cells. Nat Rev Immunol 7, 778-789 https://doi.org/10.1038/nri2172
  62. Hendriks RW, Yuvaraj S and Kil LP (2014) Targeting Bruton's tyrosine kinase in B cell malignancies. Nat Rev Cancer 14, 219-232 https://doi.org/10.1038/nrc3702
  63. Marquez JA, Smith CIE, Petoukhov MV et al (2003) Conformation of full-length Bruton tyrosine kinase (Btk) from synchrotron X-ray solution scattering. EMBO J 22, 4616- 4624 https://doi.org/10.1093/emboj/cdg448
  64. Baraldi E, Carugo KD, Hyvonen M et al (1999) Structure of the PH domain from Bruton's tyrosine kinase in complex with inositol 1,3,4,5-tetrakisphosphate. Structure 7, 449-460 https://doi.org/10.1016/S0969-2126(99)80057-4
  65. Wang Q, Vogan EM, Nocka LM, Rosen CE, Zorn JA, Harrison SC, Kuriyan J (2015) Autoinhibition of Bruton's tyrosine kinase (Btk) and activation by soluble inositol hexakisphosphate. Elife 4, e06074 https://doi.org/10.7554/eLife.06074
  66. Hyvonen M and Saraste M (1997) Structure of the PH domain and Btk motif from Bruton's tyrosine kinase: molecular explanations for X-linked agammaglobulinaemia. EMBO J 16, 3396-3404 https://doi.org/10.1093/emboj/16.12.3396
  67. Ferrell JE and Machleder EM (1998) The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes. Science 280, 895-898 https://doi.org/10.1126/science.280.5365.895
  68. Papayannopoulos V, Co C, Prehoda KE, Snapper S, Taunton J, Lim WA (2005) A polybasic motif allows N-WASP to act as a sensor of PIP(2) density. Mol Cell 17, 181-191 https://doi.org/10.1016/j.molcel.2004.11.054
  69. Johnson JE, Giorgione J and Newton AC (2000) The C1 and C2 domains of protein kinase C are independent membrane targeting modules, with specificity for phosphatidylserine conferred by the C1 domain. Biochemistry 39, 11360-11369 https://doi.org/10.1021/bi000902c