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Evaluation of Surrogate Monitoring Parameters for SS and T-P Using 
Multiple Linear Regression and Random Forest

다중 선형 회귀 분석과 랜덤 포레스트를 이용한 SS, T-P 대리모니터링 기법 평가
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ABSTRACT

Effective nonpoint source (NPS) pollution management requires frequent water quality monitoring, which is, however, often costly to be implemented 

in practice. Statistical techniques and machine learning methods allow us to identify and focus on fundamental environmental variables that have close 

relationships with NPS pollutants of interest. This study developed surrogate models to predict the concentrations of suspended sediment (SS) and total 

phosphorus (T-P) from turbidity and runoff discharge rates using multiple linear regression (MLR) and random forest (RF) methods. The RF models 

provided acceptable performance in predicting SS and T-P, especially when runoff discharge rates were high. The RF models outperformed the MLR 

models in all the cases. Such finding highlights the potential of RF techniques and models as a tool to identify fundamental environmental variables 

that are measured in relatively inexpensive ways or freely available but still able to provide information required to quantify the concentrations of NPS 

pollutants. The analysis of relative importance rates showed that the temporal variations of SS and T-P concentrations could be more effectively 

explained by that of turbidity than runoff discharge rate. This study demonstrated that the advanced statistical techniques such as machine learning could 

help to improve the efficiency of NPS pollutants monitoring.

Keywords: Surrogate monitoring; non-point source; machine learning; influence factor

Ⅰ. Introduction

The temporal variability of water quality parameters is 

information critical for efficient watershed management 

(Montgomery et al., 2007; Horsburgh et al., 2009). NPS 

pollutants are loaded to waterbodies with rainfall events that 

may last several days. In addition, the transport of NPS 

pollutants is complicated with hydrological processes that 

greatly vary over time, even in an event. Thus, a frequent 

monitoring is often required when assessing NPS pollution and 

developing water quality management plans (Scholefield et al., 

2005; Houser et al., 2006; Jordan et al., 2007). However, 

frequent NPS monitoring is often prohibitive in terms of time 

and effort.

The use of high-frequency water quality sensors can be one 

of the solutions for the cost issue of NPS monitoring, but many 

of water quality parameters such as suspended solids (SS) and 

total phosphorus (T-P) still require extensive equipment and lab 

tests to be quantified (Jones et al., 2011, Villa et al., 2019). 

In this context, surrogate monitoring can be an efficient 

alternative. Previous studies have tried to predict the water 

quality parameters with accessible parameters such as pH, 

dissolved oxygen (DO), temperature using traditional statistical 

techniques such as multiple linear regression (MLR) 

(Çamdevýren et al., 2005; Chenini and Khemiri, 2009; DeForest 

et al., 2018). Some of them showed that SS and T-P is closely 

associated with turbidity and discharge rates of a river (Jones 

et al., 2011; Ziegler et al., 2011). It is a relative measure of 
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light diffraction in water caused by particulate form, and the 

use of turbidity as a surrogate parameter to estimate T-P is based 

on that T-P transported in streams predominantly particulate 

form (Settle et al., 2007; Ruegner et al., 2013). Moreover, 

Johanna et al. (2014) predicted SS, particulate organic carbon, 

and particulate nitrogen from turbidity, flow discharge rate, and 

rainfall depth using MLR. Although, MLR is a simple statistical 

method to use (Jones et al., 2011; Ziegler et al., 2011; Johanna 

et al., 2014), and its application is limited to linear relationships, 

and it is known to be very sensitive to outliers (Chatterjee and 

Hadi, 1988).

The use of machine learning techniques such as random 

forest (RF) became affordable with recent advances made in 

computing resources and techniques, and they have been 

employed as an analysis tool for hydrologic research 

(Rodriguez-Galiano et al., 2014; Singh et al., 2017). The RF 

is a computational algorithm that can predict the values of 

continuous variables from continuous and/or categorical 

predictor variables by constructing a decision tree or classifying 

data (Razi et al., 2005). The algorithm is known not to overfit 

and efficient in predicting irregular variables that exhibit little 

periodicity (Diaz-Uriate and de Andres, 2006).

This study explored the potential of the RF algorithm as a 

tool to efficiently identify primary variables that can serve as 

surrogate for NPS pollutants. We developed prediction models 

using MLR (traditional statistical model) and RF (the latest 

statistical data mining technique) and compared their 

performance to demonstrate their capacities and potentials. This 

study focused on SS and T-P that are common NPS pollutants 

in Korea.

Ⅱ. Material and methods

1. Study areas and NPS monitoring

This study has monitored SS and T-P at the outlet of a 

catchment, Wol-jeong (WJ), located within the 

Pungyeongjeongcheon watershed in Korea for two years, from 

01/01/2017 and 12/31/2018 (Fig. 1). WJ is mostly covered by 

agricultural land uses (86%) including rice paddy fields and 

upland. The mean annual temperature and precipitation of the 

study catchment are 13.8°C and 1,391 mm, respectively.

A set of water pressure sensor and logger (OTT Orpheus 

mini, Germany) was installed to monitor the level of 

streamflow, and the velocity (VALEPORT model 002, UK) and 

cross section of flow were measured six times during the 

monitoring period. The flow level measurements were converted 

to discharge data using a flow rating curve developed for the 

outlet of the study catchment. A digital turbidity sensor (FTS 

DTS-12, Canada) was installed to monitor the turbidity of flow 

at the monitoring site (or the outlet). The flow duration curve 

was then developed from flow observations and the flow 

conditions was seperated using Table 1. Then, we separated the 

flow conditions into high-flow periods (the exceedance 

Fig. 1 Locations of the study watersheds and NPS pollutant monitoring stations
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probability equal to or less than 10%) and low-flow ones (the 

exceedance probability greater than 10%) so that the 

flow-dependent behavior of NPS pollutant transport can be 

examined in the study. Stormwater samples were taken every 

hour in the first 24 hours of a storm event using an automatic 

sampler (ISCO portable sampler 6712, USA), and the sampling 

interval was increased to 6 hours for the rest of the event. The 

concentrations of SS and T-P were analyzed in a laboratory 

according to the standard water pollution test method (APHA, 

2001). The monitored water quality variables and predictors 

such as turbidity and runoff discharge rates are summarized in 

Table 2. 

2. Surrogate model development

The potential relationships between the pollutants of interest 

(SS and T-P) and the primary environmental variables 

(discharge rates and turbidity) were explored using the MLR 

and RF methods. RF is the combination of tree-based 

classification methods such as a regression tree developed by 

Breiman, (2001). The processes of growing regression trees can 

be summarized into two steps. First, data of interest are split 

into multiple tree branches in the way toward minimizing 

least-square deviations between observed and predicted 

variables, which is called the optimal split (OPs) (Hasanipanah 

et al., 2017). The split is calculated as the difference of variance 

between the mother node and the left child node, and the right 

child node is maximized by using Eqs. 1 and 2 (Ließ et al., 

2012; Granata et al., 2017).

   ×
  



   (1)

      (2)

where R(t) is the variance in a node t, which is divided into 

the left and right child nodes, tl and tr. n is the number of 

observations, and   is the mean value of the predicted variable.

Once tree branches are constructed in the first step, RF 

prunes the trees by removing nodes that have low explanatory 

power. Here, the existence of nodes that may be removed imply 

overfitting. An overfitted model does not sensitively respond 

to newly added data, and it creates additional uncertainty to 

the prediction (Breiman et al., 1984). Thus, the pruning process 

is necessary to reduce prediction uncertainty. The overall 

procedures of predicting SS and T-P using the MLR and RF 

models are presented in Fig. 2.

The RF uses a bagging technique with a randomized subset 

of variables, which is mathematically described using Eq. 3 

(Prasad et al., 2006).

 








 (3)

where   is a RF prediction, K is the number of trees 

(or branches), and T(x) is the result of each regression tree.

The node size (five) was adapted from literature (Wang et 

al., 2015) and the’mtry’ is the number of predictors to select 

at random for each split in the tree model. However, we used 

only two variables in this study, so we used’mtry’ of two. The 

RF model calculates the relative importance of each parameter 

using the Gini impurity (GI) and mean square error (MSE) 

statistics. GI quantifies the quality of each split, and MSE 

calculates the mean decrease of prediction accuracy (Breiman, 

2001; Ouedraogo et al., 2018). The GI method is used to 

Hydrologic condition class Flow duration interval (%)

High flows 0∼10

Moist conditions 10∼40

Mid-range conditions 40∼60

Dry conditions 60∼90

Low flows 90∼100

⁕ Source: USEPA, 2007

Table 1 Classifications of hydrologic conditions

Variables Unit Min. Median Mean Max. Standard deviation Number of samples

SS mg/L 1.1 26.5 35.3 376.4 41.7 134

T-P mg/L 0.067 0.128 0.143 0.770 0.083 134

Turbidity NTU 6.6 29.1 42.9 383.0 48.5 134

Runoff m3/s 0.4 0.8 0.9 10.8 0.7 134

Table 2 Summary statistics of predictors and variables to predict SS and T-P
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calculate the quality of each split for the variables in a tree 

model and calculate the mean decrease using MSE due to splits 

on every predictor (Breiman, 2001). In this study, we found 

that K of 100 is enough to stabilize the MSE. However, the 

running time of RF slightly increased until K value hit 1,000. 

We selected K value of 1,000 while still providing reasonably 

short computing time (Fig. 3). The relative importance was 

calculated by running the RF algorithm 100 times and then 

averaging the importance rates calculated from the iterations.

It is known that one of the considerations in the machine 

learning technique is that training variables with different range 

affects the learning rates and it can be crucial problems with 

prediction performance (Ioffe and Szegedy, 2015). For example, 

turbidity ranges from 6.6 to 383 NTU, and runoff ranges from 

0.6 to 3.2 m3/s in this study. Then, the turbidity and runoff 

discharge rate data were normalized into the range from 0 to 

1 using Eq. 4 to assure that each variable can have the similar 

level of explanatory power in the analysis.

 
max min

  min
 (4)

where ′ is the normalized value of the data set (range of 0 

to 1) and  is the original value.

The flow observations made from 2017 to 2018 showed that 

the flow discharge rate of 1.08 m3/s correspond to the 10% 

discharge of the study catchment (Fig. 4). The threshold rate 

of 1.08 m3/s was used to separate discharge into high and low 

flow, and then the models were separately applied to the two 

flow regimes.

The performance of the MLR and RF models was evaluated 

with the split-sample scheme of 80/20 (80% for training and 

20% for validation; Afendras and Markatou, 2019). To validate 

the models, we used four different statistics and criteria: the 

Nash-Sutcliffe efficiency (NSE) coefficient, the coefficients of 

Fig. 3 Responses of MSE to the number of trees (K)

Fig. 2 Overall procedures of predicting SS and TP using random forest and multiple linear regression
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determination (R2), p-value (P), and the Akaike information 

criterion (AIC) (Nash and Sutcliffe, 1970; Akaike, 1973; Snipes 

and Taylor, 2014).

  



  



 


  



  


 (5)






  



 


  



 

 (6)

   ln (7)

 Pr ≤ Pr ≥ (8)

where Xi and Yi is the predicted value and observed values from 

site i and n is the number of samples. In the AIC method, k 

represents the number of parameters, and L is the likelihood 

function, which represent the model fit and it should represented 

by log-value to limit the maximum value of model fit.

A lower AIC score is interpreted as a more accurate model. 

The p-value is defined as the probability (Pr), under the null 

htpothesis H about the unknown distribution of the T. If the 

p-value shows very small value, then the statistical significance 

is thought to be very large. On the other hand, the criteria 

commonly set to 0.05, 0.01, 0.005, or 0.001 and we choose 

0.001 as criteria in this study.

Ⅲ. Results and discussion

The comparison between observation and prediction result 

was conducted with normalized value, and the normalized SS 

and T-P prediction results of the MLR and RF models are 

compared with the normalized observation values in Fig. 5 and 

Table 3. Overall, the MLR model prediction of SS and T-P 

in the low and high flow conditions were acceptable with R2 

and NSE greater than 0.5, except T-P in low flow condition. 

The T-P prediction for the low flow condition shows acceptable 

R2 but low NSE. The reason for this result is that T-P in 

agricultural area shows high concentrations for high flow 

conditions during farming period (Villa et al., 2019). Thus, high 

flow conditions shows acceptable prediction performance with 

high concentrations of T-P which shows high fluctuations and 

low flow condition shows unacceptable prediction performance 

due to low concentrations of T-P. In general, SS and T-P were 

more accurately predicted by the MLR models when runoff 

discharge is relatively large (or the high flow condition). The 

RF model provided accuracy and its patterns similar to that of 

the MLR model.

As both models provided similar accuracy when predicting 

SS and T-P from turbidity and runoff discharge rates, their 

performance was further investigated in terms of AIC values 

(Table 3). The AIC values of the RF model are lower than those 

of the MLR model, indicating that the RF model is more 

suitable for predicting SS and T-P that the MLR model in this 

study.

The relative importance of the primary environmental 

variables, runoff discharge rates and turbidity, to predict SS and 

T-P was quantified as part of the RF modeling (Fig. 6). The 

analysis of relative importance showed that turbidity was more 

closely associated with the SS and T-P concentrations than 

discharge rates with importance rates ranging from 52% to 86% 

depending on the flow conditions. As mentioned above, the 

runoff in high flow condition shows higher relative importance 

than low flow condition, which is related to the high 

concentrations of T-P in farming period.

Fig. 4 Daily runoff and flow duration curve of the study site
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 5 Comparison between the NPS pollutants observed and simulated using the MLR and RF models (a) SS 

using MLR in low flow condition; (b) SS using RF in low flow condition; (c) T-P using MLR in low flow 

condition; (d) T-P using RF in low flow condition. (e) SS using MLR in high flow condition; (f) SS using

RF in high flow condition; (g) T-P using MLR in high flow condition; (h) T-P using RF in high flow 

condition
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Model Indicator
Low flow condition High flow condition

SS T-P SS T-P

MLR

R2  0.74  0.61  0.83  0.72

NSE  0.68  0.48  0.81  0.70

AIC -35.8 -48.6 -49.2 -58.3

P-value < 0.001 < 0.001 < 0.001 < 0.001

RF

R2  0.77  0.69  0.96  0.85

NSE  0.73  0.42  0.95  0.81

AIC -67.4 -48.6 -73.9 -53.2

P-value < 0.001 < 0.001 < 0.001 < 0.001

Table 3 Performance evaluation of the MLR and RF models in predicting SS and T-P concentrations

(a) SS in low flow condition (b) SS in high flow condition

(c) T-P in low flow condition (d) T-P in high flow condition

Fig. 6 Relative importance rates of runoff discharge rates and turbidity in predicting SS and T-P concentrations
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Ⅳ. Conclusions

This study explored the potential of the MLR and RF model 

as a tool to identify surrogate environmental variables in two 

different flow conditions for the concentrations of NPS 

pollutants such as SS and T-P in agricultural sub-watershed. The 

performance of the MLR and RF models was evaluated with 

the 80% for training set and 20% for validation set. Both MLR 

and RF models provided acceptable performance when 

predicting SS and T-P in the high-flow condition. The relative 

importance rate analysis showed that turbidity had relatively 

high explanatory power (52% to 86%) than runoff discharge 

rates. Moreover, the runoff in high flow condition shows higher 

relative importance than low flow condition, which is related 

to the high concentrations of T-P in farming period. This study 

demonstrated the machine learning techniques could help to 

improve the efficiency of NPS pollutant monitoring and 

prediction by identifying fundamental environmental variables 

that are relatively easily obtained but still closely related to the 

NPS pollutants. The results also showed that turbidity could 

serve as a surrogate water quality parameter for SS and T-P 

concentrations at acceptable accuracy levels.
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