DOI QR코드

DOI QR Code

Distribution of Vital, Environmental Components and Nutrients Migration Over Sedimentary Water Layers

  • Khirul, Md Akhte (Department of Ocean System Engineering, College of Marine Science, Gyeongsang National University) ;
  • Kim, Beom-Geun (Department of Ocean System Engineering, College of Marine Science, Gyeongsang National University) ;
  • Cho, Daechul (Department of Energy and Environmental Engineering, Soonchunhyang University) ;
  • Kwon, Sung-Hyun (Department of Marine Environmental Engineering, College of Marine Science, Engineering Research Institute (ERI), Gyeongsang National University)
  • Received : 2020.04.16
  • Accepted : 2020.05.26
  • Published : 2021.03.31

Abstract

Contaminated marine sediment is a secondary pollution source in the coastal areas, which can result in increased nutrients concentrations in the overlying water. We analyzed the nutrients release characteristics into overlying water from sediments and the interaction among benthic circulation of nitrogen, phosphorus, iron, and sulfur were investigated in a preset sediment/water column. Profiles of pH, ORP, sulfur, iron, nitrogen, phosphorus pools were determined in the sediment and three different layers of overlying water. Variety types of sulfur in the sediments plays a significant role on nutrients transfer into overlying water. Dissimilatory nitrate reduction and various sulfur species interaction are predominantly embodied by the enhancing effects of sulfide on nitrogen reduction. Contaminant sediment take on high organic matter, which is decomposed by bacteria, as a result promote bacterial sulfate reduction and generate sulfide in the sediment. The sulfur and iron interactions had also influence on phosphorus cycling and released from sediment into overlying water may ensue over the dissolution of ferric iron intercede by iron-reducing bacteria. The nutrients release rate was calculated followed by release rate equation. The results showed that the sediments released large-scale quantity of ammonium nitrogen and phosphate, which are main inner source of overlying water pollution. A mechanical migration of key nutrients such as ammonia and inorganic phosphate was depicted numerically with Fick's diffusion law, which showed a fair agreement to most of the experimental data.

Keywords

References

  1. An, S., Gardner, W. S., 2002, Dissimilatory Nitrate Reduction to Ammonium (DNRA) as a nitrogen link, versus denitrification as a sink in a shallow estuary (Laguna Madre/Baffin Bay, Texas), Mar. Ecol. Prog. Ser., 237, 41-50. https://doi.org/10.3354/meps237041
  2. Azzoni, R., Giordani, G., Viaroli, P., 2005, Iron-sulphur-phosphorus interactions: implications for sediment buffering capacity in a mediterranean eutrophic lagoon (Sacca di Goro, Italy), Hydrobiologia, 550, 131-148. https://doi.org/10.1007/s10750-005-4369-x
  3. Bashkin, V. N., Park, S. U., Choi, M. S., Lee, C. B., 2002, Nitrogen budgets for the Republic of Korea and the Yellow Sea region, Biogeochemistry, 57, 387-403. https://doi.org/10.1023/A:1015767506197
  4. Brezonik, P. L., 1972, Nitrogen: sources and transformations in natural waters. In: Allen, H.E., Kramer, J.R. (Eds.), Nutrients in natural waters. John Willey & Sons, New York, 1-50.
  5. Canfield, D. E., Thamdrup, B., Hansen, J. W., 1993, The anaerobic degradation of organic matter in Danish coastal sediments: Iron reduction, manganese reduction, and sulfate reduction. Geochim. Cosmochim. Acta, 57, 3867-3883. https://doi.org/10.1016/0016-7037(93)90340-3
  6. Fossing, H., Gallardo, V. A., Jorgensen, B. B., Huttel, M., Nielsen, L. P., Schulz, H., Canfield, D. E., Forster, S., Glud, R. N., Gundersen, J. K., Kuver, J., Ramsing, N. B., Teske, A., Thamdrup, B., Ulloa, O., 1995, Concentration and transport of nitrate by the mat-forming sulfur bacterium Thioploca, Nature, 374, 713-715. https://doi.org/10.1038/374713a0
  7. Frenchel, T., King, G. M., Blackburn, T. H., 2007, Bacterial biogeochemistry: the ecophysiology of mineral cycling, 3rd ed., Academic Press, London, UK, 303-305.
  8. Gao, J., Xiong, Z., Zhang, J., Zhang, W., Mba, F. O., 2009, Phosphorus removal from water of eutrophic Lake Donghu by five submerged macrophytes, Desalination, 242, 193-204. https://doi.org/10.1016/j.desal.2008.04.006
  9. Gomez, E., Durillon, C., Rofes, G., 1999, Phosphate adsorption and release from sediments of brackish lagoons: pH, O2 and loading influence, Water Res., 33, 2437-2447. https://doi.org/10.1016/S0043-1354(98)00468-0
  10. Ignatieva, N. V., 1999, Nutrient exchange across the sediment-water interface in the eastern Gulf of Finland, Boreal Environ. Res., 4, 295-305.
  11. Jensen, H. S., Mortensen, P. B., Andersen, F. O., Rasmussen, E., Jensen, A., 1995, Phosphorus cycling in a coastal marine sediment, Aarhus Bay, Denmark, Limnol. Oceanogr., 40, 908-917. https://doi.org/10.4319/lo.1995.40.5.0908
  12. Jiang, X., Jin, X., Yao, Y., Li, L., Wu, F., 2008, Effects of biological activity, light, temperature and oxygen on phosphorus release processes at the sediment and water interface of Taihu Lake, China, Water Res., 42, 2251-2259. https://doi.org/10.1016/j.watres.2007.12.003
  13. Khirul, M. A., Cho, D., Kwon, S. H., 2020, Behaviors of nitrogen, iron and sulfur compounds in contaminated marine sediment, Environ. Eng. Res., 25, 274-280. https://doi.org/10.4491/eer.2018.360
  14. Klueglein, N., Behrens, T. L., Obst, M., Behrens, S., Appel, E., Kappler, A., 2013, Magnetite formation by the novel Fe(III)-reducing Geothrix fermentans Strain HradG1 isolated from a hydrocarbon-contaminated sediment with increased magnetic susceptibility, Geomicrobiol J., 30, 863-873. https://doi.org/10.1080/01490451.2013.790922
  15. Lee, J. K., Oh, J. M., 2018, A Study on the characteristics of organic matter and nutrients released from sediments into agricultural reservoirs, Water, 10, 980. https://doi.org/10.3390/w10080980
  16. Lentini, C. J., Wankel, S. D., Hansel, C. M., 2012, Enriched iron(III)- reducing bacterial communities are shaped by carbon substrate and iron oxide mineralogy, Front Microbiol, 3, 404. https://doi.org/10.3389/fmicb.2012.00404
  17. Lim, H. S., Diaz, R. J., Hong, J. S., Schaffner, L. C., 2006, Hypoxia and benthic community recovery in Korean coastal waters, Mar. Pollut. Bul., 52, 1517-1526. https://doi.org/10.1016/j.marpolbul.2006.05.013
  18. Lovely, D. R., Holmes, D. E., Nevin, K. P., 2004, Dissimilatory Fe(III) and Mn(IV) reduction, Adv. Microb. Physiol., 49, 219-286. https://doi.org/10.1016/S0065-2911(04)49005-5
  19. Lovely, D. R., Phillips, E. J. P., 1987, Rapid assay for reducible ferric iron in aquatic sediments, Appl. Env. Microb., 53, 1536-1540. https://doi.org/10.1128/AEM.53.7.1536-1540.1987
  20. Miller, J. R., Sinclair, J. T., Walsh, D., 2015, Controls on suspended sediment concentrations and turbidity within a reforested, Southern Appalachian headwater basin, Water, 7, 3123-3148. https://doi.org/10.3390/w7063123
  21. Morse, J. W., Morin, J., 2005, Ammonium interaction with coastal marine sediments: influence of redox conditions on K, Mar. Chem., 95, 107-112. https://doi.org/10.1016/j.marchem.2004.08.008
  22. Mu, D., Yuan, D., Feng, H., Xing, F., Teo, F. Y., Li, S., 2017, Nutrient fluxes across sediment-water interface in Bohai bay coastal zone, China, Mar. Pollut. Bull., 114, 705-714. https://doi.org/10.1016/j.marpolbul.2016.10.056
  23. Nowlin, W. H., Evarts, J. L., Vanni, M. J., 2005, Release rates and potential fates of nitrogen and phosphorus from sediments in a eutrophic reservoir, Freshw. Biol., 50, 301-322. https://doi.org/10.1111/j.1365-2427.2004.01316.x
  24. Petrie, L., North, N. N., Dollhopf, S. S., Balkwill, D. L., Kostka, J. E., 2003, Enumeration and characterization of iron(III)- reducing microbial communities from acidic subsurface sediments contaminated with uranium(VI), Appl. Environ. Microbiol., 69, 7467-7479. https://doi.org/10.1128/AEM.69.12.7467-7479.2003
  25. Purcell, A. M., Mikucki, J. A., Achberger, A. M., Alekhina, I. A., Barbante, C., Christner, B. C., Ghosh, D., Michaud, A. B., Mitchell, A. C., Priscu, J. C., Scherer, R., Skidmore, M. L., Majors, T. J. V., and the WISSARD Science Team, 2014, Microbial sulfur transformations in sediments from Subglacial Lake Whillans, Front. Microbiol., 594, 1-16.
  26. Rozan, T. F., Taillefert, M., Trouwborst, R. E., Glazer, B. T., Ma, S., 2002, Iron-sulphur-phosphorus cycling in the sediments of a shallow coastal bay: Implications for sediment nutrient release and benthic macroalgal blooms, Limnol. Oceanogr., 47,1346-1354. https://doi.org/10.4319/lo.2002.47.5.1346
  27. Sayama, M., Petersen, N. R., Nielsen, L. P., Fossing, H., Christensen, P. B., 2005, Impact of bacterial NO3 - transport on sediment biogeochemistry, Appl. Environ. Microb., 71, 7575-7577. https://doi.org/10.1128/AEM.71.11.7575-7577.2005
  28. Standard method for the examination of sea water and sediment, Ministry of Oceans and Fisheries, South Korea, 2013.
  29. Stolp, H., 1988, Microbiological ecology: Organisms, habitats, activities. Cambridge Univ. Press, New York, USA, 85-87.
  30. Stookey, L. L., 1970, Ferrozine-A new spectrophotometric reagent for iron, Anal. Chem., 42, 779-781. https://doi.org/10.1021/ac60289a016
  31. Ullman, W. J., Aller, R., 1982, Diffusion coefficients in near-shore marine sediments, Limnol. Oceanogr., 27, 552-556. https://doi.org/10.4319/lo.1982.27.3.0552
  32. Viollier, E., Inglett, P. W., Hunter, K., Roychoudhury, A. N., Cappellen, P. V., 2000, The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters, Appl. Geochem., 15, 785-790. https://doi.org/10.1016/S0883-2927(99)00097-9
  33. Way, T. M., Boland, G. S., Rowe, G. T., Twilley, R. R.,1994, Sediment oxygen consumption and benthic nutrient fluxes on the Louisiana continental shelf: a methodological comparison, Estuaries, 17, 809-815. https://doi.org/10.2307/1352749
  34. Wu, S., Kuschk, P., Wiessner, A., Muller, J., Saad, R. A. B., Dong, R., 2013, Sulphur transformations in constructed wetlands for wastewater treatment: a review, Ecol. Eng., 52, 278-289. https://doi.org/10.1016/j.ecoleng.2012.11.003