References
- Lee VS. Cardiovascular MRI: physical principles to practical protocols. Philadelphia: Lippincott Williams & Wilkins, 2006
- Manning WJ, Pennell DJ. Cardiovascular magnetic resonance. 2nd ed. Philadelphia: Saunders, 2010
- Park J, Hong HJ, Yang YJ, Ahn CB. Fast cardiac CINE MRI by iterative truncation of small transformed coefficients. Investig Magn Reson Imaging 2015;19:19-30 https://doi.org/10.13104/imri.2015.19.1.19
- Yoon JH, Kim PK, Yang YJ, Park J, Choi BW, Ahn CB. Biases in the assessment of left bentricular dunction by compressed sensing cardiovascular CINE MRI. Investig Magn Reson Imaging 2019;23:114-124 https://doi.org/10.13104/imri.2019.23.2.114
- Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 2007;58:1182-1195 https://doi.org/10.1002/mrm.21391
- Lee D, Lee J, Ko J, Yoon J, Ryu K, Nam Y. Deep learning in MR image processing. Investig Magn Reson Imaging 2019;23:81-99 https://doi.org/10.13104/imri.2019.23.2.81
- Wang S, Su Z, Ying L, et al. Accelerating magnetic resonance imaging via deep learning. Proc IEEE Int Symp Biomed Imaging 2016;2016:514-517
- Yang Y, Sun J, Li H, Xu Z. Deep ADMM-Net for compressive sensing MRI. Adv Neural Inf Process Syst (NIPS), 2016:10-18
- Yang G, Yu S, Dong H, et al. DAGAN: deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction. IEEE Trans Med Imaging 2018;37:1310-1321 https://doi.org/10.1109/tmi.2017.2785879
- Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial networks. Adv Neural Inf Process Syst (NIPS), 2014;2672-2680
- Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015
- Yu S, Dong H, Yang G, et al. Deep de-aliasing for fast compressive sensing MRI. arXiv preprint arXiv:1705.07137, 2017
- Zhu J, Yang G, Lio P. How can we make GAN performs better in single medical image super-resolution? A lesion focused multi-scale approach. Proc IEEE Int Symp Biomed Imaging (ISBI) 2019;1669-1673
- Wang C, Papanastasiou G, Tsaftaris S, et al. TPSDicyc: improved deformation invariant cross-domain medical image synthesis. Int Workshop on Mach Learn Med Image Reconstr (MLMIR) 2019;245-254
- Schlemper J, Yang G, Ferreira P, et al. Stochastic deep compressive sensing for the reconstruction of diffusion tensor cardiac MRI. Int Conf Med Image Comput Comput Assist Interv (MICCAI) 2018;295-303
- Zhu J, Yang G, Ferreira P, et al. A ROI focused multi-scale super-resolution method for the diffusion tensor cardiac magnetic resonance. Proc Int Soc Magn Reson Med (ISMRM) 2019;1
- Hyun CM, Kim HP, Lee SM, Lee S, Seo JK. Deep learning for undersampled MRI reconstruction. Phys Med Biol 2018;63:135007 https://doi.org/10.1088/0031-9155/63/13/135007
- Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. Int Conf Med Image Comput Comput Assist Interv (MICCAI) 2015;234-241
- Kofler A, Dewey M, Schaeffter T, Wald C, Kolbitsch C. Spatio-temporal deep learning-based undersampling artefact reduction for 2D radial cine MRI with limited training data. IEEE Trans Med Imaging 2020;39:703-717 https://doi.org/10.1109/tmi.2019.2930318
- Pan SJ, Yang Q. A survey on transfer learning. IEEE Trans Knowl Data Eng 2010;22:1345-1359 https://doi.org/10.1109/TKDE.2009.191
- Park SJ, Yoon JH, Ahn CB, Transfer learning for compressedsensing cardiac CINE MRI. Proc Int Soc Magn Reason Med (ISMRM) 2020;2223
- Oquab M, Bottou L, Laptev I, Sivic J. Learning and transferring mid-level image representations using convolutional neural networks. Proc IEEE Comput Vis Pattern Revognit (CVPR), 2014:1717-1724
- Ciresan D C, Meier U, Schmidhuber J. Transfer learning for Latin and Chinese characters with deep neural networks. Proc Int Jt Conf Neural Netw (IJCNN) 2012;1-6
- Meng D, Zhang L, Cao G, Cao W, Zhang G, Hu B. Liver fibrosis classification based on transfer learning and FCNet for ultrasound images. IEEE Access 2017;5:5804-5810 https://doi.org/10.1109/ACCESS.2017.2689058
- Chen A, Zhou T, Icke I, et al. Transfer learning for the fully automatic segmentation of left ventricle myocardium in porcine cardiac cine MR images. Int Workshop on Stat Atlases Comput Models Heart (STACOM) 2017;21-31
- Dar SUH, Ozbey M, Catli AB, Cukur T. A transfer-learning approach for accelerated MRI using deep neural networks. Magn Reson Med 2020;84:663-685 https://doi.org/10.1002/mrm.28148
- Andreopoulos A, Tsotsos JK. Efficient and generalizable statistical models of shape and appearance for analysis of cardiac MRI. Med Image Anal 2008;12:335-357 https://doi.org/10.1016/j.media.2007.12.003
- Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural networks. Proc Int Conf Artif Intell Stat (AISTATS) 2010;249-256
- Seitzer M, Yang G, Schlemper J, et al. Adversarial and perceptual refinement for compressed sensing MRI reconstruction. Int Conf Med Image Comput Comput Assist Interv (MICCAI) 2018;232-240