DOI QR코드

DOI QR Code

Sustainable Business Model of Water Purification Equipment and Local Manufacturing Technology Transfer of High Adsorption Bone Char to Remove Fluoride from Groundwater

지하수 불소제거를 위한 고흡착 골탄의 현지 제조기술 이전과 정수장치의 지속 가능한 비즈니스 모델 개발

  • Maeng, Min-Soo (Department of Civil and Environmental Engineering, Dankook University) ;
  • Lee, He-In (Department of Environmental and Safety Engineering) ;
  • Byun, Jung-Seop (Department of Environmental and Safety Engineering) ;
  • Park, Hyo-Jin (Department of Environmental and Safety Engineering) ;
  • Shin, Gwy-Am (Department of Environmental and Safety Engineering)
  • 맹민수 (토목환경공학과, 단국대학교) ;
  • 이혜인 (환경안전공학과, 아주대학교) ;
  • 변정섭 (환경안전공학과, 아주대학교) ;
  • 박효진 (환경안전공학과, 아주대학교) ;
  • 신귀암 (환경안전공학과, 아주대학교)
  • Received : 2021.05.15
  • Accepted : 2021.05.25
  • Published : 2021.06.20

Abstract

Gongali model Co. Ltd located in Arusha, Tanzania is operating a Nanofilter water station using locally produced bone char to remove fluoride in groundwater. Bone char produced locally had a high turbidity and high concentration of organic matter, which cause color. In addition, since the fluorine adsorption efficiency is low, there is a problem in high maintenance cost due to a short replacement cycle of bone char. In order to overcome this challenge, our research team was that a local furnace was manufactured and applied for produce high adsorption bone char in Gongali model Co. Ltd. By producing high-adsorption bone char locally, the operating efficiency of the Nanofilter water station increased, and it was possible to stably and continuously provide drinking water to local residents. In addition, by presenting a sustainable business model to Gongali model Co Ltd, the persistence of high adsorption bone char and a plan to spread the Nanofilter water station were suggested. Therefore, it was possible to propose a plan to continuously supply low-cost drinking water to the low-income and the neglected class through this local project.

탄자니아 아루샤에 위치한 Gongali model Co. Ltd는 지하수 불소제거를 위해서 현지에서 생산한 골탄을 이용하여 Nanofilter water station을 운영하고 있다. 현지에서 생산된 골탄은 탁도와 유기물 농도가 높아서 색도가 유발되는 문제가 있다. 또한, 불소 흡착 효율이 낮아서 골탄의 짧은 교체 주기로 인해 유지관리 비용이 증가하는 비용적 어려움도 있다. 이를 보완하기 위해서 고흡착 골탄을 보급하기 위한 목적으로 현지형 가마를 국내에서 제작하여 현지에 보급하는 사업을 추진하였다. 현지에서 고흡착 골탄을 생산함으로써 Nanofilter water station의 운영 효율이 증가하였으며 지역 주민들에게 안정적으로 지속해서 식수를 제공할 수 있었다. 또한, Gongali model Co. Ltd에게 지속 가능한 비즈니스 모델을 제시함으로써 고흡착 골탄의 지속성과 Nanofilter water station의 확산 계획을 제시하였다. 결과적으로 본 사업을 통해서 지속적으로 저소득층과 소외계층에게 저렴한 식수를 공급할 수 있는 방안을 마련할 수 있었다.

Keywords

Acknowledgement

본 연구는 한국연구재단 연구비를 지원받아 수행되었습니다(과제번호: 2017K1A3A904013880).

References

  1. Aklil, A., Mouflih, M., and Sebti, S. (2004). Removal of heavy metal ions from water by using calcined phosphate as a new adsorbent, J. Hazard. Mater., 112(3), pp. 183-190. https://doi.org/10.1016/j.jhazmat.2004.05.018
  2. Colombani, N. D., Di, G. S., Kebede, M., and Mas, T. (2018). Assessment of the anthropogenic fluoride export in Addis Ababa urban environment (Ethiopia), J. Geochem. Explor, 190, pp. 390-399. https://doi.org/10.1016/j.gexplo.2018.04.008
  3. Hu, J., Wu, R., Rao, R., Liu, R., and Lai, W. (2017). Adsorption kinetics of fluoride on bone char and its regeneration, Environ, Prot. Eng., 43(3), pp. 93-112.
  4. Imran, H., and Mithas, A. D. (2013). Perspectives in water pollution. Open Sci., Intech, pp. 71-75.
  5. Jeremy, A. H., Jason, M. T., and Peter, M. M. (2018). Fluorides and other preventive strategies for tooth decay, Dent. Clin. North. Am., 62, pp. 207-234. https://doi.org/10.1016/j.cden.2017.11.003
  6. Kaseva, M. E. (2006). Optimization of regenerated bone char for fluoride removal in drinking water: a case study in Tanzania, J. Water and Health, 4(1), pp. 139-147. https://doi.org/10.2166/wh.2006.0011
  7. Kut, K. M. K., Sarswat. A., Srivastava. A., and Pittman Jr, C. U. (2016). Review of fluoride in african groundwater and local remdiation methods, Groundw. Sustain. Dev., 2-3, pp. 190-212. https://doi.org/10.1016/j.gsd.2016.09.001
  8. Leyva-Ramos, R., Rivera-Utrilla, J., Medllin-Castilo, N. A., and Sanchez-polo, M. (2010). Kinetic modeling of fluoride adsorption from aqueous solution onto bone char, Chem. Eng. J., 158(3), pp. 458-467. https://doi.org/10.1016/j.cej.2010.01.019
  9. Li, Y., Ling, C. W., Slemenda, Ji, R. Sun, S., Cao, J., Emsley, C. L., Ma, F., Wu, Y., Ying, P., Gao, S., Zhang, W., Katz, B. P., Niu. S., Cao. S., and Johnston Jr. C. C. (2016). Effect of long-term exposure to fluoride in drinking water on risks of bone fractures, J. Bone Miner. Res., 16(5), pp. 932-939. https://doi.org/10.1359/jbmr.2001.16.5.932
  10. Loganathan, P., Vigneswarna, S., Kandasamy, J., and Naidu, R. (2013). Defluoridation of drinking water using adsorption processes, J. Hazard. Mater., pp. 248-249.
  11. Maeng, M. S., Byun, J. S., Park, H. J., and Shin, G. A. (2020). Optimum operating conditions of drinking water treatment system for fluoride removal using high adsorption bone char, 42(11), pp. 520-528. https://doi.org/10.4491/ksee.2020.42.11.520
  12. Malago, J., Makoba, E., and Muzuka, A. N. N. (2017). Fluoride levels in surfacr and groundwater in Africa: a review, Am. J. Water. Sci. Eng., 3(1), pp. 1-17. https://doi.org/10.11648/j.ajwse.20170301.11
  13. Medlin-Castillo, N. A., Leyva-Ramos, R., Ocampo-Perez, R., Garcia de la Cruz, R. F., Aragon-Pina, A., Martinez-Rosales, J. M., Guerrero-Coronado, R. M., and Fuentes-Rubio, L. (2007). Adsorption of fluoride from water solution on bone char, Ind. Eng. Chem. Res., 46(26), pp. 9205-9212. https://doi.org/10.1021/ie070023n
  14. Medellin-Castillo, N. A., Padilla-Ortega, E., Tovar-Garcia, L. D., Leyva-Ramos, R., Ocampo-Perez, R., Carrasco-Marin, F., and Berber-Mendoza, M. S. (2016). Removal of fluoride from aqueous solution using acid and thermally treated bone char, Adsorption, 22, pp. 951-961. https://doi.org/10.1007/s10450-016-9802-0
  15. Mohapatra, M., Anand, S., Mishra, B. K., Giles, D. E., and Singh, P. (2009). Review of fluoride removal form drinking water, J. Environ. Manag., 94(1), pp. 67-77.
  16. Moreno-Pirajan, J. C., Giraldo, L., and Garcia-Cuello, V. S. (2011). Study of the textural proerties of bovine bones char under different conditions, J. Water. Res. Prot., 3(3), pp. 176-181. https://doi.org/10.4236/jwarp.2011.33022
  17. Nair, K. R., and Gitonga, J. N. (1984). The occurrence and distribution of fluoride in groundwater of Kenya, Challenges in African Hydrology and Water Resources, in Proceedings of the Harare Symposium, 144, pp. 75-86.
  18. Vithanage, M., and Bhattacharya, P. (2015). Fluoride in the environment: sources, distribution and defluoridation, Environ. Chem. Lett., 13, pp. 131-147. https://doi.org/10.1007/s10311-015-0496-4
  19. Zuniga-Muro, N. M., Bonilla-Petriciolet, A., Mendoza-Castillo, D. I., Reynel-Avila, H. E., and Tapia-Picazo, J. C. (2017). Fluoride adsorption properties of cerium-containng bone char, J. Fluorine Chem., 197, pp. 63-73. https://doi.org/10.1016/j.jfluchem.2017.03.004