References
- Makki K, Deehan E C, Walter J, Backhed F (2018) The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe 23: 705-715. doi:101016/jchom201805012 https://doi.org/10.1016/j.chom.2018.05.012
- Koh A, De Vadder F, Kovatcheva-Datchary P, Backhed F (2016) From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165: 1332-1345. doi:101016/jcell201605041 https://doi.org/10.1016/j.cell.2016.05.041
- Qing Y, Xie H, Su C, Wang Y, Yu Q, Pang Q, Cui F (2019) Gut microbiome, short-chain fatty acids, and mucosa injury in young adults with human immunodeficiency virus infection. Dig Dis Sci 64: 1830- 1843. doi:101007/s10620-018-5428-2 https://doi.org/10.1007/s10620-018-5428-2
- Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L (2014) The role of short-chain fatty acids in health and disease. Adv Immunol 121: 91−119. doi:101016/B978-0-12-800100-400003-9
- Byrne CS, Chambers ES, Morrison DJ, Frost G (2015) The role of short chain fatty acids in appetite regulation and energy homeostasis. Int J Obes 39: 1331-1338. doi:101038/ijo201584 https://doi.org/10.1038/ijo.2015.84
- Rios-Covián D, Ruas-Madiedo P, Margolles A, Gueimonde M, De Los Reyes-gavilán CG, Salazar N (2016) Intestinal short chain fatty acids and their link with diet and human health. Front Microbiol 17: 185. doi:103389/fmicb201600185
- Donohoe DR, Garge N, Zhang X, Sun W, O'Connell TM, Bunger MK, Bultman SJ (2011) The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metabol 13: 517-526. doi:101016/jcmet201102018 https://doi.org/10.1016/j.cmet.2011.02.018
- Shimotoyodome A, Meguro S, Hase T, Tokimitsu I, Sakata T (2000) Short chain fatty acids but not lactate or succinate stimulate mucus release in the rat colon. Comp Biochem Physiol A Mol Integr Physiol 125: 525-531. doi:101016/S1095-6433(00)00183-5 https://doi.org/10.1016/S1095-6433(00)00183-5
- Hamer HM, Jonkers DMAE, Venema K, Vanhoutvin SALW, Troost FJ, Brummer R-J (2008) The role of butyrate on colonic function. Aliment Pharmacol Ther 27: 104-119. doi:101111/j1365-2036200703562x https://doi.org/10.1111/j.1365-2036.2007.03562.x
- Canani RB, Di Costanzo M, Leone L, Pedata M, Meli R, Calignano A (2011) Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World J Gastroenterol 28: 1519-1528. doi:103748/wjgv17i121519
- Ley RE (2010) Obesity and the human microbiome. Curr Opin Gastroenterol 26: 5-11. doi:101097/MOG0b013e328333d751 https://doi.org/10.1097/MOG.0b013e328333d751
- Strober W (2013) Impact of the gut microbiome on mucosal inflammation. Trends Immunol 34: 423-430. doi:101016/jit201307001 https://doi.org/10.1016/j.it.2013.07.001
- Kim J, Choi JH, Ko G, Jo H, Oh T, Ahn B, Unno T (2020) Anti-Inflammatory Properties and Gut Microbiota Modulation of Porphyra tenera Extracts in Dextran Sodium Sulfate-Induced Colitis in Mice. Antioxidants 9: 988. doi:103390/antiox9100988 https://doi.org/10.3390/antiox9100988
- Foster JA, Rinaman L, Cryan JF (2017) Stress the gut-brain axis: regulation by the microbiome. Neurobiol Stress 19: 124-136. doi:101016/jynstr201703001 https://doi.org/10.1016/j.ynstr.2017.03.001
- Xu Z, Knight R (2015) Dietary effects on human gut microbiome diversity. Br J Nutr. https://pubmed.ncbi.nlm.nih.gov/25498959/. Accessed 11 Dec 2014. doi:101017/S0007114514004127
- Minekus M, Alminger M, Alvito P, Ballance S, Bohn T, Bourlieu C, Carriere F, Boutrou R, Corredig M, Dupont D, Dufour C, Egger L, Golding M, Karakaya S, Krkhus B, Le Feunteun S, Lesmes U, Macierzanka A, Mackie A, Marze S, McClements DJ, Menard O, Recio I, Santos CN, Singh RP, Vegarud GE, Wickham MSJ, Weitschies W, Brodkorb A (2014) A standardised static in vitro digestion method suitable for food-an international consensus. Food Funct. 5: 1113. doi:101039/C3FO60702J https://doi.org/10.1039/c3fo60702j
- Moon J S, Li L, Bang J, Han N S (2016) Application of in vitro gut fermentation models to food components: A review. Food Sci Biotechnol 25: 1-7. doi:101007/s10068-016-0091-x https://doi.org/10.1007/s10068-016-0091-x
- Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75: 7537-7541. doi:101128/AEM01541-09 https://doi.org/10.1128/AEM.01541-09
- Westcott SL, Schloss PD (2017) OptiClust, an improved method for assigning amplicon-based sequence data to operational taxonomic units. mSphere 8;2(2):e00073-17. doi:101128/mSphereDirect00073-17
- Clarke KR, Somerfield PJ, Chapman MG (2006) On resemblance measures for ecological studies, including taxonomic dissimilarities and a zero-adjusted Bray-Curtis coefficient for denuded assemblages. J Exp Mar Biol Ecol 330: 55-80. doi:101016/jjembe200512017 https://doi.org/10.1016/j.jembe.2005.12.017
- Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett W S, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol R60. doi:101186/gb-2011-12-6-r60 https://doi.org/10.1186/gb-2011-12-6-r60
- De Micheaux PL, Drouilhet R, Liquet B (2013) The R software. Springer. New York
- Koliada A, Syzenko G, Moseiko V, Budovska L, Puchkov K, Perederiy V, Gavalko Y, Dorofeyev A, Romanenko M, Tkach S(2017) Association between body mass index and Firmicutes/Bacteroidetes ratio in an adult Ukrainian population. BMC Microbiol 120. doi:101186/s12866-017-1027-1 https://doi.org/10.1186/s12866-017-1027-1
- Banerjee S, Sar A, Misra A, Pal S, Chakraborty A, Dam B (2018) Increased productivity in poultry birds by sub-lethal dose of antibiotics is arbitrated by selective enrichment of gut microbiota, particularly short-chain fatty acid producers. Microbiology 164. doi:101099/mic0000597
- Belenguer A, Duncan SH, Calder AG, Holtrop G, Louis P, Lobley GE, Flint HJ (2006) Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut. Appl Environ Microbiol 72: 3593-3599. doi:101128/ AEM7253593-35992006 https://doi.org/10.1128/AEM.72.5.3593-3599.2006
- Machiels K, Joossens M, Sabino J, De Preter V, Arijs I, Eeckhaut V, Ballet V, Claes K, Van Immerseel F, Verbeke K (2014) A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut 63: 1275-1283. doi:101136/gutjnl-2013-305799 https://doi.org/10.1136/gutjnl-2013-304833
- Oliphant K, Allen-Vercoe E (2019) Macronutrient metabolism by the human gut microbiome: major fermentation by-products and their impact on host health. Microbiome. 91. doi:101186/s40168-019-0704-8
- Louis P, Hold GL, Flint HJ (2014) The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol 12: 661-672. doi:101038/nrmicro3344 https://doi.org/10.1038/nrmicro3344
- Wullt M, Hagslatt ML J, Odenholt I, Berggren A (2007) Lactobacillus plantarum 299v enhances the concentrations of fecal short-chain fatty acids in patients with recurrent clostridium difficile-associated diarrhea. Dig Dis Sci 52: 2082-2086. doi:101007/s10620-006-9123-3 https://doi.org/10.1007/s10620-006-9123-3
- Geirnaert A, Steyaert A, Eeckhaut V, Debruyne B, Arends J B, Van Immerseel F, Boon N, Van de Wiele T (2014) Butyricicoccus pullicaecorum, a butyrate producer with probiotic potential, is intrinsically tolerant to stomach and small intestine conditions. Anaerobe 30: 70-74. doi:101016/janaerobe201408010 https://doi.org/10.1016/j.anaerobe.2014.08.010
- Hiippala K, Barreto G, Burrello C, Diaz-Basabe A, Suutarinen M, Kainulainen V, Bowers JR, Lemmer D, Engelthaler DM, Eklund KK, Facciotti F, Satokari R (2020) Novel Odoribacter splanchnicus Strain and Its Outer Membrane Vesicles Exert Immunoregulatory Effects in vitro Front Microbiol doi:103389/fmicb2020575455 https://doi.org/10.3389/fmicb.2020.575455
- Tong AJ, Hu RK, Wu LX, Lv XC, Li X, Zhao LN, Liu B (2020) Ganoderma polysaccharide and chitosan synergistically ameliorate lipid metabolic disorders and modulate gut microbiota composition in high fat diet-fed golden hamsters. J Food Biochem. doi:101111/jfbc13109
- Parada Venegas D, De la Fuente MK, Landskron G, Gonzalez MJ, Quera R, Dijkstra G, Harmsen HJM, Faber KN, Hermoso MA (2019) Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol 10: 277. doi:103389/fimmu201900277 https://doi.org/10.3389/fimmu.2019.00277
- Bang SJ, Kim G, Lim MY, Song EJ, Jung DH, Kum JS, Nam YD, Park CS, Seo, DH (2018) The influence of in vitro pectin fermentation on the human fecal microbiome. Amb Express 8: 98. doi:101186/s13568-018-0629-9 https://doi.org/10.1186/s13568-018-0629-9
- Afouda P, Hocquart M, Pham TP, Kuete E, Ngom II, Dione N, Valles C, Bellali S, Lagier JC, Dubourg G, Raoult D (2020) Alcohol pretreatment of stools effect on culturomics. Sci Rep 10. doi:101038/s41598-020-62068-x
- Frost F, Storck LJ, Kacprowski T, Gartner S, Rühlemann M, Bang C, Franke A, Volker U, Aghdassi AA, Steveling A, Mayerle J, Weiss FU, Homuth G, Lerch MM (2019) A structured weight loss program increases gut microbiota phylogenetic diversity and reduces levels of Collinsella in obese type 2 diabetics: A pilot study. PLoS One 14: e0219489. doi:101371/journalpone0219489 https://doi.org/10.1371/journal.pone.0219489
- Gomez-Arango LF, Barrett HL, Wilkinson SA, Callaway LK, McIntyre HD, Morrison M, Dekker Nitert M (2018) Low dietary fiber intake increases Collinsella abundance in the gut microbiota of overweight and obese pregnant women. Gut Microbes 9: 189-201. doi:101080/1949097620171406584 https://doi.org/10.1080/19490976.2017.1406584
- Miura K, Ohnishi H (2014) Role of gut microbiota and Toll-like receptors in nonalcoholic fatty liver disease. World J Gastroenterol 21: 7381-7391. doi:103748/wjgv20i237381 https://doi.org/10.3748/wjg.v20.i23.7381
- Foditsch C, Santos TM, Teixeira AG, Pereira RV, Dias JM, Gaeta N, Bicalho RC (2014) Isolation and characterization of Faecalibacterium prausnitzii from calves and piglets. PloS one 9: e116465. doi:101371/journalpone0116465 https://doi.org/10.1371/journal.pone.0116465
Cited by
- Differences in fecal and cecal microbiota in C57BL/6J mice fed normal and high fat diet vol.64, pp.4, 2021, https://doi.org/10.3839/jabc.2021.054