DOI QR코드

DOI QR Code

In vitro investigation of food effects on human gut microbiota

In vitro 상에서 식품이 장내미생물에 미치는 영향

  • Jeon, Dabin (Faculty of Biotechnology, School of life sciences, SARI Jeju National University) ;
  • Singh, Vineet (Faculty of Biotechnology, School of life sciences, SARI Jeju National University) ;
  • Unno, Tatsuya (Faculty of Biotechnology, School of life sciences, SARI Jeju National University)
  • Received : 2021.01.04
  • Accepted : 2021.02.01
  • Published : 2021.03.31

Abstract

Recent gut microbiota studies have revealed the important roles of gut microbiota for our health. Increasing numbers of health functional foods have been developed every year. Development of functional food often includes ex- and in-vivo experiment to verify the beneficial effects of the functional food. To investigate effects of functional food on gut microbiota, animal models were often conducted. Beneficial effects of food can be evaluated based on how gut microbiota was shifted by food, which results in either increase in beneficial bacteria, decrease in potentially pathogenic bacteria or both. As animal experiments are generally time-consuming and laborious, we investigate how well in-vitro investigation of fecal microbiota may reflect dietary health benefits. Here, we tested 15 kinds of diets using two human subjects' fecal materials. Our results showed varying gut microbiota shifts according to diets, which suggested generally known beneficial diets (i.e. Kimchi, Chunggukjang) increased Lactobacillus and Bifidobacterium. Therefore, we suggest that in vitro fecal microbiota analysis could be used to evaluate beneficial effects of diets. Moreover, this method may be ideal to establish personalized diet.

최근의 장내 미생물 연구에 따르면 우리의 건강에 대한 장내 미생물의 중요한 역할이 밝혀졌다. 이에 매년 다양한 건강 기능 식품이 개발되고 있다. 기능성 식품의 개발에는 기능성 식품의 유익한 효과를 확인하기위한 in-vivo 실험이 포함되는 경우가 많다. 그 이유로 기능성 식품이 장내 미생물에 미치는 영향을 조사하기 위해서 동물 실험을 자주 수행하고 있는 실정이다. 식품의 유익한 효과는 장내 미생물 생태가 식품에 의해 이동되어 유익한 박테리아의 증가, 잠재적인 병원성 박테리아의 감소 또는 둘 다에 따라 평가 될 수 있다. 동물 실험은 일반적으로 시간이 많이 걸리고 까다롭기 때문에 본 연구팀은 분변 미생물에 대한 in-vitro 연구로 식이 건강상의 이점을 얼마나 잘 반영하는지 조사했다. 본 연구에서는 두 사람의 배설물을 사용하여 15가지 음식이 장내미생물에 주는 영향을 조사했다. 결과는 식단에 따라 다양한 장내 미생물 이동을 보여 주었으며, 이는 일반적으로 알려진 유익한 식단(즉, 김치, 청국장)이 유산균과 비피도 박테리움을 증가 시켰음을 확인했다. 따라서, 우리는 식이 요법의 유익한 효과를 평가하기 위해 체외 분변 미생물균총 분석을 사용할 수 있다고 제안한다. 또한, 이 방법은 더 나아가 개인 맞춤형 식단을 설정하는 데 도움이 될 수 있다고 사료된다.

Keywords

References

  1. Makki K, Deehan E C, Walter J, Backhed F (2018) The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe 23: 705-715. doi:101016/jchom201805012 https://doi.org/10.1016/j.chom.2018.05.012
  2. Koh A, De Vadder F, Kovatcheva-Datchary P, Backhed F (2016) From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165: 1332-1345. doi:101016/jcell201605041 https://doi.org/10.1016/j.cell.2016.05.041
  3. Qing Y, Xie H, Su C, Wang Y, Yu Q, Pang Q, Cui F (2019) Gut microbiome, short-chain fatty acids, and mucosa injury in young adults with human immunodeficiency virus infection. Dig Dis Sci 64: 1830- 1843. doi:101007/s10620-018-5428-2 https://doi.org/10.1007/s10620-018-5428-2
  4. Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L (2014) The role of short-chain fatty acids in health and disease. Adv Immunol 121: 91−119. doi:101016/B978-0-12-800100-400003-9
  5. Byrne CS, Chambers ES, Morrison DJ, Frost G (2015) The role of short chain fatty acids in appetite regulation and energy homeostasis. Int J Obes 39: 1331-1338. doi:101038/ijo201584 https://doi.org/10.1038/ijo.2015.84
  6. Rios-Covián D, Ruas-Madiedo P, Margolles A, Gueimonde M, De Los Reyes-gavilán CG, Salazar N (2016) Intestinal short chain fatty acids and their link with diet and human health. Front Microbiol 17: 185. doi:103389/fmicb201600185
  7. Donohoe DR, Garge N, Zhang X, Sun W, O'Connell TM, Bunger MK, Bultman SJ (2011) The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metabol 13: 517-526. doi:101016/jcmet201102018 https://doi.org/10.1016/j.cmet.2011.02.018
  8. Shimotoyodome A, Meguro S, Hase T, Tokimitsu I, Sakata T (2000) Short chain fatty acids but not lactate or succinate stimulate mucus release in the rat colon. Comp Biochem Physiol A Mol Integr Physiol 125: 525-531. doi:101016/S1095-6433(00)00183-5 https://doi.org/10.1016/S1095-6433(00)00183-5
  9. Hamer HM, Jonkers DMAE, Venema K, Vanhoutvin SALW, Troost FJ, Brummer R-J (2008) The role of butyrate on colonic function. Aliment Pharmacol Ther 27: 104-119. doi:101111/j1365-2036200703562x https://doi.org/10.1111/j.1365-2036.2007.03562.x
  10. Canani RB, Di Costanzo M, Leone L, Pedata M, Meli R, Calignano A (2011) Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World J Gastroenterol 28: 1519-1528. doi:103748/wjgv17i121519
  11. Ley RE (2010) Obesity and the human microbiome. Curr Opin Gastroenterol 26: 5-11. doi:101097/MOG0b013e328333d751 https://doi.org/10.1097/MOG.0b013e328333d751
  12. Strober W (2013) Impact of the gut microbiome on mucosal inflammation. Trends Immunol 34: 423-430. doi:101016/jit201307001 https://doi.org/10.1016/j.it.2013.07.001
  13. Kim J, Choi JH, Ko G, Jo H, Oh T, Ahn B, Unno T (2020) Anti-Inflammatory Properties and Gut Microbiota Modulation of Porphyra tenera Extracts in Dextran Sodium Sulfate-Induced Colitis in Mice. Antioxidants 9: 988. doi:103390/antiox9100988 https://doi.org/10.3390/antiox9100988
  14. Foster JA, Rinaman L, Cryan JF (2017) Stress the gut-brain axis: regulation by the microbiome. Neurobiol Stress 19: 124-136. doi:101016/jynstr201703001 https://doi.org/10.1016/j.ynstr.2017.03.001
  15. Xu Z, Knight R (2015) Dietary effects on human gut microbiome diversity. Br J Nutr. https://pubmed.ncbi.nlm.nih.gov/25498959/. Accessed 11 Dec 2014. doi:101017/S0007114514004127
  16. Minekus M, Alminger M, Alvito P, Ballance S, Bohn T, Bourlieu C, Carriere F, Boutrou R, Corredig M, Dupont D, Dufour C, Egger L, Golding M, Karakaya S, Krkhus B, Le Feunteun S, Lesmes U, Macierzanka A, Mackie A, Marze S, McClements DJ, Menard O, Recio I, Santos CN, Singh RP, Vegarud GE, Wickham MSJ, Weitschies W, Brodkorb A (2014) A standardised static in vitro digestion method suitable for food-an international consensus. Food Funct. 5: 1113. doi:101039/C3FO60702J https://doi.org/10.1039/c3fo60702j
  17. Moon J S, Li L, Bang J, Han N S (2016) Application of in vitro gut fermentation models to food components: A review. Food Sci Biotechnol 25: 1-7. doi:101007/s10068-016-0091-x https://doi.org/10.1007/s10068-016-0091-x
  18. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75: 7537-7541. doi:101128/AEM01541-09 https://doi.org/10.1128/AEM.01541-09
  19. Westcott SL, Schloss PD (2017) OptiClust, an improved method for assigning amplicon-based sequence data to operational taxonomic units. mSphere 8;2(2):e00073-17. doi:101128/mSphereDirect00073-17
  20. Clarke KR, Somerfield PJ, Chapman MG (2006) On resemblance measures for ecological studies, including taxonomic dissimilarities and a zero-adjusted Bray-Curtis coefficient for denuded assemblages. J Exp Mar Biol Ecol 330: 55-80. doi:101016/jjembe200512017 https://doi.org/10.1016/j.jembe.2005.12.017
  21. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett W S, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol R60. doi:101186/gb-2011-12-6-r60 https://doi.org/10.1186/gb-2011-12-6-r60
  22. De Micheaux PL, Drouilhet R, Liquet B (2013) The R software. Springer. New York
  23. Koliada A, Syzenko G, Moseiko V, Budovska L, Puchkov K, Perederiy V, Gavalko Y, Dorofeyev A, Romanenko M, Tkach S(2017) Association between body mass index and Firmicutes/Bacteroidetes ratio in an adult Ukrainian population. BMC Microbiol 120. doi:101186/s12866-017-1027-1 https://doi.org/10.1186/s12866-017-1027-1
  24. Banerjee S, Sar A, Misra A, Pal S, Chakraborty A, Dam B (2018) Increased productivity in poultry birds by sub-lethal dose of antibiotics is arbitrated by selective enrichment of gut microbiota, particularly short-chain fatty acid producers. Microbiology 164. doi:101099/mic0000597
  25. Belenguer A, Duncan SH, Calder AG, Holtrop G, Louis P, Lobley GE, Flint HJ (2006) Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut. Appl Environ Microbiol 72: 3593-3599. doi:101128/ AEM7253593-35992006 https://doi.org/10.1128/AEM.72.5.3593-3599.2006
  26. Machiels K, Joossens M, Sabino J, De Preter V, Arijs I, Eeckhaut V, Ballet V, Claes K, Van Immerseel F, Verbeke K (2014) A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut 63: 1275-1283. doi:101136/gutjnl-2013-305799 https://doi.org/10.1136/gutjnl-2013-304833
  27. Oliphant K, Allen-Vercoe E (2019) Macronutrient metabolism by the human gut microbiome: major fermentation by-products and their impact on host health. Microbiome. 91. doi:101186/s40168-019-0704-8
  28. Louis P, Hold GL, Flint HJ (2014) The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol 12: 661-672. doi:101038/nrmicro3344 https://doi.org/10.1038/nrmicro3344
  29. Wullt M, Hagslatt ML J, Odenholt I, Berggren A (2007) Lactobacillus plantarum 299v enhances the concentrations of fecal short-chain fatty acids in patients with recurrent clostridium difficile-associated diarrhea. Dig Dis Sci 52: 2082-2086. doi:101007/s10620-006-9123-3 https://doi.org/10.1007/s10620-006-9123-3
  30. Geirnaert A, Steyaert A, Eeckhaut V, Debruyne B, Arends J B, Van Immerseel F, Boon N, Van de Wiele T (2014) Butyricicoccus pullicaecorum, a butyrate producer with probiotic potential, is intrinsically tolerant to stomach and small intestine conditions. Anaerobe 30: 70-74. doi:101016/janaerobe201408010 https://doi.org/10.1016/j.anaerobe.2014.08.010
  31. Hiippala K, Barreto G, Burrello C, Diaz-Basabe A, Suutarinen M, Kainulainen V, Bowers JR, Lemmer D, Engelthaler DM, Eklund KK, Facciotti F, Satokari R (2020) Novel Odoribacter splanchnicus Strain and Its Outer Membrane Vesicles Exert Immunoregulatory Effects in vitro Front Microbiol doi:103389/fmicb2020575455 https://doi.org/10.3389/fmicb.2020.575455
  32. Tong AJ, Hu RK, Wu LX, Lv XC, Li X, Zhao LN, Liu B (2020) Ganoderma polysaccharide and chitosan synergistically ameliorate lipid metabolic disorders and modulate gut microbiota composition in high fat diet-fed golden hamsters. J Food Biochem. doi:101111/jfbc13109
  33. Parada Venegas D, De la Fuente MK, Landskron G, Gonzalez MJ, Quera R, Dijkstra G, Harmsen HJM, Faber KN, Hermoso MA (2019) Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol 10: 277. doi:103389/fimmu201900277 https://doi.org/10.3389/fimmu.2019.00277
  34. Bang SJ, Kim G, Lim MY, Song EJ, Jung DH, Kum JS, Nam YD, Park CS, Seo, DH (2018) The influence of in vitro pectin fermentation on the human fecal microbiome. Amb Express 8: 98. doi:101186/s13568-018-0629-9 https://doi.org/10.1186/s13568-018-0629-9
  35. Afouda P, Hocquart M, Pham TP, Kuete E, Ngom II, Dione N, Valles C, Bellali S, Lagier JC, Dubourg G, Raoult D (2020) Alcohol pretreatment of stools effect on culturomics. Sci Rep 10. doi:101038/s41598-020-62068-x
  36. Frost F, Storck LJ, Kacprowski T, Gartner S, Rühlemann M, Bang C, Franke A, Volker U, Aghdassi AA, Steveling A, Mayerle J, Weiss FU, Homuth G, Lerch MM (2019) A structured weight loss program increases gut microbiota phylogenetic diversity and reduces levels of Collinsella in obese type 2 diabetics: A pilot study. PLoS One 14: e0219489. doi:101371/journalpone0219489 https://doi.org/10.1371/journal.pone.0219489
  37. Gomez-Arango LF, Barrett HL, Wilkinson SA, Callaway LK, McIntyre HD, Morrison M, Dekker Nitert M (2018) Low dietary fiber intake increases Collinsella abundance in the gut microbiota of overweight and obese pregnant women. Gut Microbes 9: 189-201. doi:101080/1949097620171406584 https://doi.org/10.1080/19490976.2017.1406584
  38. Miura K, Ohnishi H (2014) Role of gut microbiota and Toll-like receptors in nonalcoholic fatty liver disease. World J Gastroenterol 21: 7381-7391. doi:103748/wjgv20i237381 https://doi.org/10.3748/wjg.v20.i23.7381
  39. Foditsch C, Santos TM, Teixeira AG, Pereira RV, Dias JM, Gaeta N, Bicalho RC (2014) Isolation and characterization of Faecalibacterium prausnitzii from calves and piglets. PloS one 9: e116465. doi:101371/journalpone0116465 https://doi.org/10.1371/journal.pone.0116465

Cited by

  1. Differences in fecal and cecal microbiota in C57BL/6J mice fed normal and high fat diet vol.64, pp.4, 2021, https://doi.org/10.3839/jabc.2021.054