DOI QR코드

DOI QR Code

A study on the method of deriving the cause of social issues based on causal sentences

인과관계문형 기반 사회이슈 발생원인 도출 방법 연구

  • Lee, Namyeon (Department of IT Management, Hanshin University) ;
  • Lee, Jae Hyung (Department of IT Management, Hanshin University)
  • Received : 2020.12.28
  • Accepted : 2021.03.20
  • Published : 2021.03.28

Abstract

With development of big data analysis technology, many studies to find social issues using texts mining techniques have been conducted. In order to derive social issues, previous studies performed in a way that collects a large amount of text data from news or SNS, and then analyzes issues based on text mining techniques such as topic modeling and terms network analysis. Social issues are the results of various social phenomena and factors. However, since previous studies focused on deriving social issues that are results of various causes, there are limitations to revealing the cause of the issues. In order to effectively respond to social issues, it is necessary not only to derive social issues, but also to be able to identify the causes of social issues. In this study, in order to overcome these limitations, we proposed a method of deriving the factors that cause social issues from texts related to social issues based on the theory of part of Korean linguistics. To do this, we collected news data related to social issues for three years from 2017 to 2019 and proposed a methodology to find causes based causal sentences based on text mining techniques.

최근 빅데이터 분석 기술이 발전하면서 사회 이슈를 분석하기 위해 그 동안 많은 텍스트 마이닝 기법을 활용한 연구들이 진행되어왔다. 사회이슈를 도출하기 위한 기존의 연구들을 살펴보면 다량의 텍스트 데이터를 뉴스, SNS 등으로부터 수집하여 토픽 모델링, 네트워크 분석 등의 기법을 이용하여 데이터로부터 이슈를 추출하고 분석하는 방식으로 연구들이 이루어져왔다. 사회 이슈는 다양한 사회현상들이 누적되어 나타나는 결과물이다. 하지만 기존 연구들이 가지는 한계점은 사회적으로 나타나는 이슈, 즉 결과에 대한 분석에 초점이 맞춰져 있어 해당 이슈의 발생 원인을 밝히는 것에는 한계를 가진다는 것이다. 사회이슈에 적절하게 대응하기 위해서는 어떠한 사회이슈가 존재하는지를 확인하는 것뿐만 아니라 사회이슈의 발생 원인을 파악하는 것이 필요하다. 이러한 한계점을 극복하기 위해서 본 연구에서는 사회 이슈와 관련한 텍스트로부터 사회이슈의 원인이 되는 요인을 도출하는 방법을 국어학의 품사이론을 기반으로 제안하였다. 이를 위해서 2017년 1월부터 2019년 12월까지의 3년 동안의 사회이슈와 관련한 뉴스데이터를 수집하여 수집된 텍스트 내 단어들의 인과관계를 인과문형을 찾아 분석한 후 기존 텍스트마이닝 기법 접목하여 사회이슈의 원인 단어들을 찾는 방법론을 제안하였다.

Keywords

References

  1. J. Y. Won & D. G. Kim. (2014). Deduction of Social Risk Issues Using Text Mining. Crisisonomy, 10(7), 33-52.
  2. Li. Z. Zhou, D. Juan. Y. F & Han. J. (2010, April). Keyword extraction for social snippets. In Proceedings of the 19th international conference on World wide web, 1143-1144.
  3. Sakaki. T, Toriumi. F & Matsuo. Y. (2011). Tweet trend analysis in an emergency situation. In Proceedings of the Special Workshop on Internet and Disasters, 1-8.
  4. Wang. J, Liu. J & Wang, C. (2007, May). Keyword extraction based on pagerank. In Pacific-Asia Conference on Knowledge Discovery and Data Mining, 857-864.
  5. W. J. Song. (2014). Significance and Tasks of R&D Projects for Solving Social Problems. SCIENCE & TECHNOLOGY POLICY, 24(2), 4-13
  6. M. S. Lim & N. G. Kim. (2014). Analyzing the Issue Life Cycle by Mapping Inter-Period Issues. Journal of Intelligence Information Systems, 20(4), 25-41. https://doi.org/10.13088/jiis.2014.20.4.25
  7. S. C. Back, S. H. Jo, N. H. Kim & K. S. Noh. (2017). A Study on the Process of Refining Ideas for Social Problem Solving Based on Design Thinking in Digital Convergence Era. Journal of Digital Convergence, 15(2), 155-163. https://doi.org/10.14400/JDC.2017.15.2.155
  8. H. J. Lee & J. S. Hwang. (2015). Service framework and process for solving social issues. Review of Korean Society for Internet Information, 16(1), 63-68.
  9. J. Heo, C. H. Lee, H. J. Oh, Y. C. Yoon, H. K. Kim, Y. H. Jo. & C. Y. Ock. (2014). Web Science : Automatic Generation of Issue Analysis Report Based on Social Big Data Mining. Software and Data Eng, 3(12), 553-564.
  10. J. H. Bae, N. G. Han. & M. Song. (2014). Twitter Issue Tracking System by Topic Modeling Techniques. Journal of Intelligence and Information Systems, 20(2), 109-122 https://doi.org/10.13088/jiis.2014.20.2.109
  11. D. M. Jeong, J. S. Kim, G. N. Kim, J. U. Heo, B. W. On. & M. J. Kang. (2013). A Proposal of a Keyword Extraction System for Detecting Social Issues. Journal of Intelligence Information Systems, 19(3), 1-23. https://doi.org/10.13088/jiis.2013.19.3.001
  12. S. M. Lee & S. J. Ahn. (2020). Mass Media and Social Media Agenda Analysis Using Text Mining : focused on '5-day Rotation Mask Distribution System'. Journal of The Korea Contents Association, 20(6), 460-469. https://doi.org/10.5392/JKCA.2020.20.06.460
  13. J. H. Ki & S, H, Ahn. (2020). Application of Sentiment Analysis and Topic Modeling on Rural Solar PV Issues : Comparison of News Articles and Blog Posts. Journal of Digital Convergence, 18(9), 17-27. https://doi.org/10.14400/JDC.2020.18.9.017
  14. S. R. Lee & E. J. Choi. (2020). Comparison of responses to issues in SNS and Traditional Media using Text Mining-Focusing on the Termination of Korea-Japan General Security of Military Information Agreement(GSOMIA)-. Journal of Digital Convergence, 18(20), 277-284.
  15. M. C. Lee & H. J. Kim (2018). Construction of Event Networks from Large News Data Using Text Mining Techniques. Journal of Intelligence and Information Systems, 24(1), 183-203. https://doi.org/10.13088/jiis.2018.24.1.183
  16. Li. P & Mao. K. (2019). Knowledge-oriented convolutional neural network for causal relation extraction from natural language texts. Expert Systems with Applications, 115, 512-523. https://doi.org/10.1016/j.eswa.2018.08.009
  17. Girju. R. (2003). Automatic detection of causal relations for question answering. In Proceedings of the ACL 2003 workshop on Multilingual summarization and question answering, 76-83.
  18. T. N. De Silva, X. Zhibo, Z. Rui & M. Kezhi. (2017). Causal relation identification using convolutional neural networks and knowledge based features. International Journal of Computer, Electrical, Automation, Control and Information Engineering, 11(6), 696-701.
  19. M. S. Lim & N. G. Kim. (2016). Investigating Dynamic Mutation Process of Issues Using Unstructured Text Analysis. Journal of Intelligence Information Systems, 22(1), 1-18. https://doi.org/10.13088/jiis.2016.22.1.01
  20. Ilmola, L & Kuusi, O. (2006) Filters of weak signals hinder foresight: Monitoring weak signals efficiently in corporate decision making. Futures, 38(8), 908-924. https://doi.org/10.1016/j.futures.2005.12.019
  21. Ansoff, I. H. (1975). Managing strategic surprise by response to weak signals, California Management Review, 18(2), 21-33. https://doi.org/10.2307/41164635
  22. World Economic Forum Global Risks Report, http://reports.weforum.org/
  23. C. H. Lim. (2006). The formation process of causal relations and the connecting endings of Korean language. In Proceedings of the conference on the discourse and cognitive linguistics society of Korea, 151-164.
  24. E. G. Yi. (2000). A Study on connective endings in Korean. Thae Hak Sa.
  25. P. H. Yoon. (1992). Study of Korean conjunctive endings, Hansin MUNHWASA.
  26. Mikolov. T, Sutskever. I, Chen. K, Corrado. G. S & Dean. J. (2013). Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems, 26, 3111-3119.