DOI QR코드

DOI QR Code

Periplanetasin-2 Enhances the Antibacterial Properties of Vancomycin or Chloramphenicol in Escherichia coli

  • Lee, Heejeong (School of Life Sciences, BK21 Four KNU Creative BioResearch Group, Kyungpook National University) ;
  • Hwang, Jae Sam (Department of Agricultural Biology, National Academy of Agricultural Science, RDA) ;
  • Lee, Dong Gun (School of Life Sciences, BK21 Four KNU Creative BioResearch Group, Kyungpook National University)
  • Received : 2020.10.29
  • Accepted : 2020.11.24
  • Published : 2021.02.28

Abstract

Periplanetasin-2 from cockroach exhibits broad-spectrum antimicrobial activity. The underlying antibacterial mechanisms rely on the stimulation of reactive oxygen species overproduction to induce apoptotic cell death. A promising strategy to increase the bioavailability of periplanetasin-2 involves reducing the dose through combination therapy with other antibacterials that show synergistic effects. Thus, the synergistic antibacterial activity of periplanetasin-2 with conventional antibacterial agents and its mechanisms was examined against Escherichia coli in this study. Among the agents tested, the combinations of periplanetasin-2 with vancomycin and chloramphenicol exhibited synergistic effects. Periplanetasin-2 in combination with vancomycin and chloramphenicol demonstrated antibacterial activity through the intracellular oxidative stress response. The combination with vancomycin resulted in the enhancement of bacterial apoptosis-like death, whereas the combination with chloramphenicol enhanced oxidative stress damage. These synergistic interactions of periplanetasin-2 can help broaden the spectrum of conventional antibiotics. The combination of antimicrobial peptides and conventional antibiotics is proposed as a novel perspective on treatments to combat severe bacterial infection.

Keywords

References

  1. Bassetti M, Righi E. 2015. New antibiotics and antimicrobial combination therapy for the treatment of gram-negative bacterial infections. Cur. Opin. Critic. Care 21: 402-411. https://doi.org/10.1097/MCC.0000000000000235
  2. Wang S, Zeng X, Yang Q, Qiao S. 2016. Antimicrobial peptides as potential alternatives to antibiotics in food animal industry. Int. J. Mol. Sci. 17: 603. https://doi.org/10.3390/ijms17050603
  3. Chan EWL, Yee ZY, Raja I, Yap JKY. 2017. Synergistic effect of non-steroidal anti-inflammatory drugs (NSAIDs) on antibacterial activity of cefuroxime and chloramphenicol against methicillin-resistant Staphylococcus aureus. J. Glob Antimicrob. Resist. 10: 70-74. https://doi.org/10.1016/j.jgar.2017.03.012
  4. Starr CG, He J, Wimley WC. 2016. Host cell interactions are a significant barrier to the clinical utility of peptide antibiotics. ACS Chem. Biol. 11: 3391-3399. https://doi.org/10.1021/acschembio.6b00843
  5. Tamma PD, Cosgrove SE, Maragakis LL. 2012. Combination therapy for treatment of infections with gram-negative bacteria. Clin. Microbiol. Rev. 25: 450-470. https://doi.org/10.1128/CMR.05041-11
  6. Smekalova M, Aragon V, Panacek A, Prucek R, Zboril R, Kvitek L. 2016. Enhanced antibacterial effect of antibiotics in combination with silver nanoparticles against animal pathogens. Vet. J. 209: 174-179. https://doi.org/10.1016/j.tvjl.2015.10.032
  7. Grassi L, Maisetta G, Esin S, Batoni G. 2017. Combination strategies to enhance the efficacy of antimicrobial peptides against bacterial biofilms. Front. Microbiol. 8: 2409. https://doi.org/10.3389/fmicb.2017.02409
  8. Yun J, Hwang JS, Lee DG. 2017. The antifungal activity of the peptide, periplanetasin-2, derived from American cockroach Periplaneta americana. Biochem. J. 474: 3027-3043. https://doi.org/10.1042/BCJ20170461
  9. Lee B, Hwang JS, Lee DG. 2019. Induction of apoptosis-like death by periplanetasin-2 in Escherichia coli and contribution of SOS genes. Appl. Microbiol. Biotechnol. 103: 1417-1427. https://doi.org/10.1007/s00253-018-9561-9
  10. Edition ASN. 2012. CLSI document M07-A9. Wayne, PA: Clinical and Laboratory Standards Institute.
  11. Lee H, Choi H, Lee JC, Lee YC, Woo E-R, Lee DG. 2016. Antibacterial activity of hibicuslide c on multidrug-resistant Pseudomonas aeruginosa isolates. Curr. Microbiol. 73: 519-526. https://doi.org/10.1007/s00284-016-1092-y
  12. Lee H, Hwang JS, Lee J, Kim JI, Lee DG. 2015. Scolopendin 2, a cationic antimicrobial peptide from centipede, and its membrane-active mechanism. Biochim. Biophys. Acta 1848: 634-642. https://doi.org/10.1016/j.bbamem.2014.11.016
  13. Lee H, Lee DG. 2019. SOS genes contribute to Bac8c induced apoptosis-like death in Escherichia coli. Biochimie 157: 195-203. https://doi.org/10.1016/j.biochi.2018.12.001
  14. Hwang IS, Hwang JH, Choi H, Kim KJ, Lee DG. 2012. Synergistic effects between silver nanoparticles and antibiotics and the mechanisms involved. J. Med. Microbiol. 61: 1719-1726. https://doi.org/10.1099/jmm.0.047100-0
  15. Lee H, Lee DG. 2018. Gold nanoparticles induce a reactive oxygen species-independent apoptotic pathway in Escherichia coli. Colloids and Surfaces B: Biointerfaces. 167: 1-7. https://doi.org/10.1016/j.colsurfb.2018.03.049
  16. Lee H, Hwang JS, Lee DG. 2019. Periplanetasin-4, a novel antimicrobial peptide from the cockroach, inhibits communications between mitochondria and vacuoles. Biochem. J. 476: 1267-1284. https://doi.org/10.1042/BCJ20180933
  17. Jena N. 2012. DNA damage by reactive species: mechanisms, mutation and repair. J. Biosci. 37: 503-517. https://doi.org/10.1007/s12038-012-9218-2
  18. Woodbine L, Brunton H, Goodarzi A, Shibata A, Jeggo P. 2011. Endogenously induced DNA double strand breaks arise in heterochromatic DNA regions and require ataxia telangiectasia mutated and Artemis for their repair. Nucl. Acids Res. 39: 6986-6997. https://doi.org/10.1093/nar/gkr331
  19. Wehrens M, Ershov D, Rozendaal R, Walker N, Schultz D, Kishony R, et al. 2018. Size laws and division ring dynamics in filamentous Escherichia coli cells. Curr. Biol. 28: 972-979. e975. https://doi.org/10.1016/j.cub.2018.02.006
  20. Tang SY, Zhang SW, Wu JD, Wu F, Zhang J, Dong JT, et al. 2018. Comparison of mono-and combination antibiotic therapy for the treatment of Pseudomonas aeruginosa bacteraemia: a cumulative meta-analysis of cohort studies. Exp. Ther. Med. 15: 2418-2428.
  21. Tepekule B, Uecker H, Derungs I, Frenoy A, Bonhoeffer S. 2017. Modeling antibiotic treatment in hospitals: A systematic approach shows benefits of combination therapy over cycling, mixing, and mono-drug therapies. PLoS Comput. Biol. 13: e1005745. https://doi.org/10.1371/journal.pcbi.1005745
  22. Jorge P, Perez-Perez M, Rodriguez GP, Pereira MO, Lourenco A. 2017. A network perspective on antimicrobial peptide combination therapies: the potential of colistin, polymyxin B and nisin. Int. J. Antimicrob. Agents 49: 668-676. https://doi.org/10.1016/j.ijantimicag.2017.02.012
  23. Kohanski MA, Dwyer DJ, Collins JJ. 2010. How antibiotics kill bacteria: from targets to networks. Nat. Rev. Microbiol. 8: 423-435. https://doi.org/10.1038/nrmicro2333
  24. Yarlagadda V, Sarkar P, Samaddar S, Haldar J. 2016. A vancomycin derivative with a pyrophosphate‐binding group: a strategy to combat vancomycin‐resistant bacteria. Angew. Chem. Int. Ed. Engl. 55: 7836-7840. https://doi.org/10.1002/anie.201601621
  25. Lai C-C, Chen C-C, Chuang Y-C, Tang H-J. 2017. Combination of cephalosporins with vancomycin or teicoplanin enhances antibacterial effect of glycopeptides against heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA) and VISA. Sci. Rep. 7: 41758. https://doi.org/10.1038/srep41758
  26. Mir RA, Weppelmann TA, Johnson JA, Archer D, Morris JG, Jr., Jeong KC. 2016. Identification and characterization of cefotaxime resistant bacteria in beef cattle. PLoS One 11: e0163279. https://doi.org/10.1371/journal.pone.0163279
  27. Lai CC, Chen CC, Chuang YC, Tang HJ. 2017. Combination of cephalosporins with vancomycin or teicoplanin enhances antibacterial effect of glycopeptides against heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA) and VISA. Sci. Rep. 7: 41758. https://doi.org/10.1038/srep41758
  28. Dwyer DJ, Collins JJ, Walker GC. 2015. Unraveling the physiological complexities of antibiotic lethality. Annu. Rev. Pharmacol. Toxicol. 55: 313-332. https://doi.org/10.1146/annurev-pharmtox-010814-124712
  29. Erental A, Kalderon Z, Saada A, Smith Y, Engelberg-Kulka H. 2014. Apoptosis-like death, an extreme SOS response in Escherichia coli. mBio 5: e01426-01414.
  30. Dominguez DC, Guragain M, Patrauchan M. 2015. Calcium binding proteins and calcium signaling in prokaryotes. Cell Calcium. 57: 151-165. https://doi.org/10.1016/j.ceca.2014.12.006
  31. Groisman EA, Hollands K, Kriner MA, Lee EJ, Park SY, Pontes MH. 2013. Bacterial Mg2+ homeostasis, transport, and virulence. Annu. Rev. Genet. 47: 625-646. https://doi.org/10.1146/annurev-genet-051313-051025
  32. Bayles KW. 2014. Bacterial programmed cell death: making sense of a paradox. Nat. Rev. Microbiol. 12: 63-69. https://doi.org/10.1038/nrmicro3136
  33. Guo J, Lao Y, Chang DC. 2009. Calcium and apoptosis. pp. 597-622. Handbook of neurochemistry and molecular neurobiology. Springer, Boston, USA.
  34. Lee W, Lee DG. 2014. Magainin 2 induces bacterial cell death showing apoptotic properties. Curr. Microbiol. 69: 794-801. https://doi.org/10.1007/s00284-014-0657-x
  35. Lee W, Lee DG. 2014. Lycopene-induced hydroxyl radical causes oxidative DNA damage in Escherichia coli. J. Microbiol. Biotechnol. 24: 1232-1237. https://doi.org/10.4014/jmb.1406.06009