DOI QR코드

DOI QR Code

Pleiotropic Effects of Caffeine Leading to Chromosome Instability and Cytotoxicity in Eukaryotic Microorganisms

  • Received : 2020.11.30
  • Accepted : 2020.12.22
  • Published : 2021.02.28

Abstract

Caffeine, a methylxanthine analog of purine bases, is a compound that is largely consumed in beverages and medications for psychoactive and diuretic effects and plays many beneficial roles in neuronal stimulation and enhancement of anti-tumor immune responses by blocking adenosine receptors in higher organisms. In single-cell eukaryotes, however, caffeine somehow impairs cellular fitness by compromising cell wall integrity, inhibiting target of rapamycin (TOR) signaling and growth, and overriding cell cycle arrest caused by DNA damage. Among its multiple inhibitory targets, caffeine specifically interacts with phosphatidylinositol 3-kinase (PI3K)-related kinases causing radiosensitization and cytotoxicity via specialized intermediate molecules. Caffeine potentiates the lethality of cells in conjunction with several other stressors such as oxidants, irradiation, and various toxic compounds through largely unknown mechanisms. In this review, recent findings on caffeine effects and cellular detoxification schemes are highlighted and discussed with an emphasis on the inhibitory interactions between caffeine and its multiple targets in eukaryotic microorganisms such as budding and fission yeasts.

Keywords

References

  1. Wikoff D, Welsh BT, Henderson R, Brorby GP, Britt J, Myers E, et al. 2017. Systematic review of the potential adverse effects of caffeine consumption in healthy adults, pregnant women, adolescents, and children. Food Chem. Toxicol. 109(Pt 1): 585-648. https://doi.org/10.1016/j.fct.2017.04.002
  2. Fredholm BB, Battig K, Holmen J, Nehlig A, Zvartau EE. 1999. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol. Rev. 51: 83-133.
  3. Lopez-Cruz L, Salamone JD, Correa M. 2018. Caffeine and selective adenosine receptor antagonists as new therapeutic tools for the motivational symptoms of depression. Front. Pharmacol. 9: 526. https://doi.org/10.3389/fphar.2018.00526
  4. Malinauskas BM, Aeby VG, Overton RF, Carpenter-Aeby T, Barber-Heidal K. 2007. A survey of energy drink consumption patterns among college students. Nutr. J. 6: 35. https://doi.org/10.1186/1475-2891-6-35
  5. Smith AP. 2013. Caffeine, extraversion and working memory. J. Psychopharmacol. 27: 71-76. https://doi.org/10.1177/0269881112460111
  6. Zhou H, Luo Y, Huang S. 2010. Updates of mTOR inhibitors. Anticancer Agents Med. Chem. 10: 571-581. https://doi.org/10.2174/187152010793498663
  7. Combettes L, Berthon B, Claret M. 1994. Caffeine inhibits cytosolic calcium oscillations induced by noradrenaline and vasopressin in rat hepatocytes. Biochem. J. 301: 737-744. https://doi.org/10.1042/bj3010737
  8. Ferguson LR, Philpott M. 2008. Nutrition and mutagenesis. Annu. Rev. Nutr. 28: 313-329. https://doi.org/10.1146/annurev.nutr.28.061807.155449
  9. Tolmach LJ, Jones RW, Busse PM. 1977. The action of caffeine on x-irradiated Hela cells. I. Delayed inhibition of DNA synthesis. Radiat. Res. 71: 653-665. https://doi.org/10.2307/3574633
  10. Busse PM, Bose SK, Jones RW, Tolmach LJ. 1978. The action of caffeine on X-irradiated HeLa cells III. Enhancement of X-ray-induced killing during G2 arrest. Radiat. Res. 76: 292-307. https://doi.org/10.2307/3574780
  11. Porta M, Vioque J, Ayude D, Alguacil J, Jariod M, Ruiz L, et al. 2003. Coffee drinking: the rationale for treating it as a potential effect modifier of carcinogenic exposures. Eur. J. Epidemiol. 18: 289-298. https://doi.org/10.1023/a:1023700216945
  12. Lu YP, Lou YR, Xie JG, Peng QY, Liao J, Yang CS, et al. 2002. Topical applications of caffeine or (-)-epigallocatechin gallate (EGCG) inhibit carcinogenesis and selectively increase apoptosis in UVB-induced skin tumors in mice. Proc. Natl. Acad. Sci. USA99: 12455-12460. https://doi.org/10.1073/pnas.182429899
  13. Nomura M, Ichimatsu D, Moritani S, Koyama I, Dong Z, Yokogawa K, et al. 2005. Inhibition of epidermal growth factor-induced cell transformation and akt activation by caffeine. Mol. Carcinog. 44: 67-76. https://doi.org/10.1002/mc.20120
  14. Han W, Ming M, He YY. 2011. Caffeine promotes ultraviolet B-induced apoptosis in human keratinocytes without complete DNA repair. J. Biol. Chem. 286: 22825-22832. https://doi.org/10.1074/jbc.M111.222349
  15. Venkata Charan Tej GN, Neogi K, Verma SS, Chandra Gupta S, Nayak PK. 2019. Caffeine-enhanced anti-tumor immune response through decreased expression of PD1 on infiltrated cytotoxic T lymphocytes. Eur. J. Pharmacol. 859: 172538. https://doi.org/10.1016/j.ejphar.2019.172538
  16. Shafiei F, Salari-Moghaddam A, Milajerdi A, Larijani B, Esmaillzadeh A. 2019. Coffee and caffeine intake and risk of ovarian cancer: a systematic review and meta-analysis. Int. J. Gynecol. Cancer 29: 579-584. https://doi.org/10.1136/ijgc-2018-000102
  17. Ding M, Bhupathiraju SN, Chen M, van Dam RM, Hu FB. 2014. Caffeinated and decaffeinated coffee consumption and risk of type 2 diabetes: a systematic review and a dose-response meta-analysis. Diabetes Care 37: 569-586. https://doi.org/10.2337/dc13-1203
  18. Micek A, Godos J, Lafranconi A, Marranzano M, Pajak A. 2018. Caffeinated and decaffeinated coffee consumption and melanoma risk: a dose-response meta-analysis of prospective cohort studies. Int. J. Food. Sci. Nutr. 69: 417-426. https://doi.org/10.1080/09637486.2017.1373752
  19. Zhao LG, Li ZY, Feng GS, Ji XW, Tan YT, Li HL, et al. 2020. Coffee drinking and cancer risk: an umbrella review of meta-analyses of observational studies. BMC Cancer 20: 101. https://doi.org/10.1186/s12885-020-6561-9
  20. Sandlie I, Solberg K, Kleppe K. 1980. The effect of caffeine on cell growth and metabolism of thymidine in Escherichia coli. Mutat. Res. 73: 29-41. https://doi.org/10.1016/0027-5107(80)90133-5
  21. Sandlie I, Lossius I, Sjastad K, Kleppe K. 1983. Mechanism of caffeine-induced inhibition of DNA synthesis in Escherichia coli. FEBS Lett. 151: 237-242. https://doi.org/10.1016/0014-5793(83)80077-5
  22. Daglia M, Cuzzoni MT, Dacarro C. 1994. Antibacterial activity of coffees: Relationship between biological activity and chemical markers. J. Agric. Food Chem. 42: 2273-2277. https://doi.org/10.1021/jf00046a036
  23. Almeida AAP, Farah A, Silva DAM, Nunan EA, Gloria MBA. 2006. Antibacterial activity of coffee extracts and selected coffee chemical compounds against enterobacteria. J. Agric. Food. Chem. 54: 8738-8743. https://doi.org/10.1021/jf0617317
  24. Al-Janabi AAHS. 2011. Potential activity of the purine compounds caffeine and aminophylline on bacteria. J. Glob. Infect. Dis. 3: 133-137. https://doi.org/10.4103/0974-777X.81689
  25. Sledz W, Los E, Paczek A, Rischka J, Motyka A, Zoledowska S, et al. 2015. Antibacterial activity of caffeine against plant pathogenic bacteria. Acta Biochim. Pol. 62: 605-612. https://doi.org/10.18388/abp.2015_1092
  26. Dash SS, Gummadi, S. 2008. Inhibitory effect of caffeine on growth of various bacterial strains. Res. J. Microbiol. 3: 457-465. https://doi.org/10.3923/jm.2008.457.465
  27. Ruta LL, Farcasanu IC. 2020. Saccharomyces cerevisiae and caffeine implications on the eukaryotic cell. Nutrients 12: 2440. https://doi.org/10.3390/nu12082440
  28. Dubois E, Scherens B, Vierendeels F, Ho MM, Messenguy F, Shears SB. 2002. In Saccharomyces cerevisiae, the inositol polyphosphate kinase activity of Kcs1p is required for resistance to salt stress, cell wall integrity, and vacuolar morphogenesis. J. Biol. Chem. 277: 23755-23763. https://doi.org/10.1074/jbc.M202206200
  29. Saiardi A, Resnick AC, Snowman AM, Wendland B, Snyder SH. 2005. Inositol pyrophosphates regulate cell death and telomere length through phosphoinositide 3-kinase-related protein kinases. Proc. Natl. Acad. Sci. USA 102: 1911-1914. https://doi.org/10.1073/pnas.0409322102
  30. Bode AM, Dong Z. 2007. The enigmatic effects of caffeine in cell cycle and cancer. Cancer Lett. 247: 26-39. https://doi.org/10.1016/j.canlet.2006.03.032
  31. Beavo JA, Rogers NL, Crofford OB, Hardman JG, Sutherland EW, Newman EV. 1970. Effects of xanthine derivatives on lipolysis and on adenosine 3',5'-monophosphate phosphodiesterase activity. Mol. Pharmacol. 6: 597-603.
  32. Wharton W, Goz B. 1979. Induction of alkaline phosphatase activity in HeLa cells. Inhibition by xanthine derivatives and thermostability studies. Biochem. Pharmacol. 28: 763-768. https://doi.org/10.1016/0006-2952(79)90356-3
  33. Wells JN, Miller JR. 1988. Methylxanthine inhibitors of phosphodiesterases. Methods Enzymol. 159: 489-496. https://doi.org/10.1016/0076-6879(88)59048-1
  34. Nishijima H, Nishitani H, Saito N, Nishimoto T. 2003. Caffeine mimics adenine and 2'-deoxyadenosine, both of which inhibit the guanine-nucleotide exchange activity of RCC1 and the kinase activity of ATR. Genes Cells 8: 423-435. https://doi.org/10.1046/j.1365-2443.2003.00644.x
  35. Jacoby JJ, Nilius SM, Heinisch JJ. 1998. A screen for upstream components of the yeast protein kinase C signal transduction pathway identifies the product of the SLG1 gene. Mol. Gen. Genet. 258: 148-155. https://doi.org/10.1007/s004380050717
  36. Martin H, Rodriguez-Pachon JM, Ruiz C, Nombela C, Molina M. 2000. Regulatory mechanisms for modulation of signaling through the cell integrity Slt2-mediated pathway in Saccharomyces cerevisiae. J. Biol. Chem. 275: 1511-1519. https://doi.org/10.1074/jbc.275.2.1511
  37. Kuranda K, Leberre V, Sokol S, Palamarczyk G, Francois J. 2006. Investigating the caffeine effects in the yeast Saccharomyces cerevisiae brings new insights into the connection between TOR, PKC and Ras/cAMP signalling pathways. Mol. Microbiol. 61: 1147-1166. https://doi.org/10.1111/j.1365-2958.2006.05300.x
  38. Kim H, Thak EJ, Yeon JY, Sohn MJ, Choo JH, Kim JY, et al. 2018. Functional analysis of Mpk1-mediated cell wall integrity signaling pathway in the thermotolerant methylotrophic yeast Hansenula polymorpha. J. Microbiol. 56: 72-82. https://doi.org/10.1007/s12275-018-7508-6
  39. Reinke A, Chen JC, Aronova S, Powers T. 2006. Caffeine targets TOR complex I and provides evidence for a regulatory link between the FRB and kinase domains of Tor1p. J. Biol. Chem. 281: 31616-31626. https://doi.org/10.1074/jbc.m603107200
  40. Lum PY, Armour CD, Stepaniants SB, Cavet G, Wolf MK, Butler JS, et al. 2004. Discovering modes of action for therapeutic compounds using a genome-wide screen of yeast heterozygotes. Cell 116: 121-137. https://doi.org/10.1016/S0092-8674(03)01035-3
  41. McMahon LP, Yue W, Santen RJ, Lawrence JC Jr. 2005. Farnesylthiosalicylic acid inhibits mammalian target of rapamycin (mTOR) activity both in cells and in vitro by promoting dissociation of the mTOR-raptor complex. Mol. Endocrinol. 19: 175-183. https://doi.org/10.1210/me.2004-0305
  42. Wanke V, Cameroni E, Uotila A, Piccolis M, Urban J, Loewith R, et al. 2008. Caffeine extends yeast lifespan by targeting TORC1. Mol. Microbiol. 69: 277-285. https://doi.org/10.1111/j.1365-2958.2008.06292.x
  43. Wullschleger S, Loewith R, Hall MN. 2006. TOR Signaling in growth and mtabolism. Cell 124: 471-484. https://doi.org/10.1016/j.cell.2006.01.016
  44. Sarkaria JN, Busby EC, Tibbetts RS, Roos P, Taya Y, Karnitz LM, et al. Inhibition of ATM and ATR kinase activities by the radiosensitizing agent, caffeine. Cancer Res. 59: 4375-4382.
  45. Block WD, Merkle D, Meek K, Lees-Miller SP. 2004. Selective inhibition of the DNA-dependent protein kinase (DNA-PK) by the radiosensitizing agent caffeine. Nucleic Acids Res. 32: 1967-1972. https://doi.org/10.1093/nar/gkh508
  46. Sage JM, Cura AJ, Lloyd KP, Carruthers A. 2015. Caffeine inhibits glucose transport by binding at the GLUT1 nucleotide-binding site. Am. J. Physiol. Cell Physiol. 308: C827-834. https://doi.org/10.1152/ajpcell.00001.2015
  47. Carruthers A, Helgerson AL. 1989. The human erythrocyte sugar transporter is also a nucleotide binding protein. Biochemistry 28: 8337-8346. https://doi.org/10.1021/bi00447a011
  48. Courchesne WE, Ozturk S. 2003. Amiodarone induces a caffeine-inhibited, MID1-depedent rise in free cytoplasmic calcium in Saccharomyces cerevisiae. Mol. Microbiol. 47: 223-234. https://doi.org/10.1046/j.1365-2958.2003.03291.x
  49. Islam MS, Larsson O, Nilsson T, Berggren PO. 1995. Effects of caffeine on cytoplasmic free Ca2+ concentration in pancreatic beta-cells are mediated by interaction with ATP-sensitive K+ channels and L-type voltage-gated Ca2+ channels but not the ryanodine receptor. Biochem. J. 306: 679-686. https://doi.org/10.1042/bj3060679
  50. Calvo IA, Gabrielli N, Iglesias-Baena I, Garcia-Santamarina S, Hoe KL, Kim DU, et al. Genome-wide screen of genes required for caffeine tolerance in fission yeast. PLoS One 4: e6619. https://doi.org/10.1371/journal.pone.0006619
  51. Qi Z, Xiong L. 2013. Characterization of a purine permease family gene OsPUP7 involved in growth and development control in rice. J. Integr. Plant. Biol. 55: 1119-1135. https://doi.org/10.1111/jipb.12101
  52. Selby CP, Sancar A. 1990. Molecular mechanisms of DNA repair inhibition by caffeine. Proc. Natl. Acad. Sci. USA 87: 3522-3525. https://doi.org/10.1073/pnas.87.9.3522
  53. Schlegel R, Pardee AB. 1986. Caffeine-induced uncoupling of mitosis from the completion of DNA replication in mammalian cells. Science 232: 1264-1266. https://doi.org/10.1126/science.2422760
  54. Downes CS, Musk SR, Watson JV, Johnson RT. 1990. Caffeine overcomes a restriction point associated with DNA replication, but does not accelerate mitosis. J. Cell Biol. 110: 1855-1859. https://doi.org/10.1083/jcb.110.6.1855
  55. Moser BA, Brondello JM, Baber-Furnari B, Russell P. 2000. Mechanism of caffeine-induced checkpoint override in fission yeast. Mol. Cell. Biol. 20: 4288-4294. https://doi.org/10.1128/MCB.20.12.4288-4294.2000
  56. Rowley R, Zorch M, Leeper DB. 1984. Effect of caffeine on radiation-induced mitotic delay: Delayed expression of G2 arrest. Radiat. Res. 97: 178-185. https://doi.org/10.2307/3576199
  57. Kirillova, TV, Rozanov, Iu M, Seregina, TB, Spivak, IM, 1989. The Effect of caffeine on the duration of the mitotic phase cycle in CHO-K1 Chinese hamster cells, irradiated with X-rays. Tsitologiia 31: 476-483.
  58. Jung T, Streffer C. 1992. Effects of caffeine on protein phosphorylation and cell cycle progression in X-irradiated two-cell mouse embryos. Int. J. Radiat. Biol. 62: 161-168. https://doi.org/10.1080/09553009214551971
  59. Powell SN, DeFrank JS, Connell P, Eogan M, Preffer F, Dombkowski D, et a1. 1995. Differential sensitivity of p53(-) and p53(+) cells to caffeine-induced radiosensitization and override of G2 delay. Cancer Res. 55: 1643-1648.
  60. Yao SL, Akhtar AJ, McKenna KA, Bedi GC, Sidransky D, Mabry M, et al. 1996. Selective radiosensitization of p53-deficient cells by caffeine-mediated activation of p34cdc2 kinase. Nat. Med. 2: 1140-1143. https://doi.org/10.1038/nm1096-1140
  61. Hartwell LH, Kastan MB. 1994. Cell cycle control and cancer. Science 266: 1821-1828. https://doi.org/10.1126/science.7997877
  62. Blasina A, Price BD, Turenne GA, McGowan CH. 1999. Caffeine inhibits the checkpoint kinase ATM. Curr. Biol. 9: 1135-1138. https://doi.org/10.1016/S0960-9822(99)80486-2
  63. Sarkaria JN, Tibbetts RS, Busby EC, Kennedy AP, Hill DE, Abraham RT. 1998. Inhibition of phosphoinositide 3-kinase related kinases by the radiosensitizing agent wortmannin. Cancer Res. 58: 4375-4382.
  64. Hall-Jackson CA, Cross DA, Morrice N, Smythe C. 1999. ATR is a caffeine-sensitive, DNA-activated protein kinase with a substrate specificity distinct from DNA-PK. Oncogene 18: 6707-6713. https://doi.org/10.1038/sj/onc/1203077
  65. Taylor R Jr, Chen PH, Chou CC, Patel J, Jin SV. 2012. KCS1 deletion in Saccharomyces cerevisiae leads to a defect in translocation of autophagic proteins and reduces autophagosome formation. Autophagy 8: 1300-1311. https://doi.org/10.4161/auto.20681
  66. Worley J, Luo X, Capaldi AP. 2013. Inositol pyrophosphates regulate cell growth and the environmental stress response by activating the HDAC Rpd3L. Cell Rep. 3: 1476-1482. https://doi.org/10.1016/j.celrep.2013.03.043
  67. Shears SB. 2018. Intimate connections: Inositol pyrophosphates at the interface of metabolic regulation and cell signaling. J. Cell. Physiol. 233: 1897-1912. https://doi.org/10.1002/jcp.26017
  68. Lev S, Li C, Desmarini D, Sorrell TC, Saiardi A, Djordjevic JT. 2019. Fungal kinases with a sweet tooth: Pleiotropic roles of their phosphorylated inositol sugar products in the pathogenicity of Cryptococcus neoformans present novel drug targeting opportunities. Front. Cell Infect. Microbiol. 9: 248. https://doi.org/10.3389/fcimb.2019.00248
  69. Saiardi A, Sciambi C, McCaffery JM, Wendland B, Snyder SH. 2002. Inositol pyrophosphates regulate endocytic trafficking. Proc. Natl. Acad. Sci. USA 99: 14206-14211. https://doi.org/10.1073/pnas.212527899
  70. Burton A, Hu X, Saiardi A. 2009. Are inositol pyrophosphates signalling molecules? J. Cell. Physiol. 220: 8-15. https://doi.org/10.1002/jcp.21763
  71. Chakraborty A, Koldobskiy MA, Bello NT, Maxwell M, Potter JJ, Juluri KR, et al. 2010. Inositol pyrophosphates inhibit Akt signaling, thereby regulating insulin sensitivity and weight gain. Cell 143: 897-910. https://doi.org/10.1016/j.cell.2010.11.032
  72. York SJ, Armbruster BN, Greenwell P, Petes TD, York JD. 2005. Inositol diphosphate signaling regulates telomere length. J. Biol. Chem. 280: 4264-4269. https://doi.org/10.1074/jbc.M412070200
  73. Li C, Lev S, Saiardi A, Desmarini D, Sorrell TC, Djordjevic JT. 2016. Identification of a major IP5 kinase in Cryptococcus neoformans confirms that PP-IP5/IP7, not IP6, is essential for virulence. Sci. Rep. 6: 23927. https://doi.org/10.1038/srep23927
  74. Cortez D. 2003. Caffeine inhibits checkpoint responses without inhibiting the ataxia-telangiectasia-mutated (ATM) and ATM- and Rad3-related (ATR) protein kinases. J. Biol. Chem. 278: 37139-37145. https://doi.org/10.1074/jbc.M307088200
  75. Tornaletti S, Russo P, Parodi S, Pedrini AM. 1989. Studies on DNA binding of caffeine and derivatives: evidence of intercalation by DNA-unwinding experiments. Biochim. Biophys. Acta 1007: 112-115. https://doi.org/10.1016/0167-4781(89)90138-3
  76. Harvey AN, Savage JR. 1994. A case of caffeine-mediated cancellation of mitotic delay without enhanced breakage in V79 cells. Mutat. Res. 304: 203-209. https://doi.org/10.1016/0027-5107(94)90212-7
  77. Ribeiro JC, Barnetson AR, Jackson P, Ow K, Links M, Russell PJ. 1999. Caffeine-increased radiosensitivity is not dependent on a loss of G2/M arrest or apoptosis in bladder cancer cell lines. Int. J. Radiat. Biol. 75: 481-492. https://doi.org/10.1080/095530099140410
  78. Asaad NA, Zeng ZC, Guan J, Thacker J, Iliakis G. 2000. Homologous recombination as a potential target for caffeine radiosensitization in mammalian cells: reduced caffeine radiosensitization in XRCC2 and XRCC3 mutants. Oncogene 19: 5788-5800. https://doi.org/10.1038/sj/onc/1203953
  79. Kane CM, Linn S. 1981. Purification and characterization of an apurinic/apyrimidinic endonuclease from HeLa cells. J. Biol. Chem. 256: 3405-3414. https://doi.org/10.1016/S0021-9258(19)69623-7
  80. Lehmann AR, Kirk-Bell S, Arlett CF, Harcourt SA, de Weerd-Kastelein EA, Keijzer W, Hall-Smith P. 1977. Repair of ultraviolet light damage in a variety of human fibroblast cell strains. Cancer Res. 37: 904-910.
  81. Kaufmann WK, Heffernan TP, Beaulieu LM, Doherty S, Frank AR, Zhou Y, et al. 2003. Caffeine and human DNA metabolism: the magic and the mystery. Mutat. Res. 532: 85-102. https://doi.org/10.1016/j.mrfmmm.2003.08.012
  82. Grigg GW. 1972. Effects of coumarin, pyronin Y, 6,9-dimethyl 2-methylthiopurine and caffeine on excision repair and recombination repair in Escherichia coli. J. Gen. Microbiol. 70: 221-230. https://doi.org/10.1099/00221287-70-2-221
  83. Loprieno N, Barale R, Baroncelli S. 1974. Genetic effects of caffeine. Mutat. Res. 26: 83-87. https://doi.org/10.1016/S0027-5107(74)80038-2
  84. Yefremova GI, Filippova LM. 1974. Effect of caffeine on crossing-over in Drosophila melanogaster. Mutat. Res. 23: 347-352. https://doi.org/10.1016/0027-5107(74)90108-0
  85. Tsabar M, Eapen VV, Mason JM, Memisoglu G, Waterman DP, Long MJ, et al. 2015. Caffeine impairs resection during DNA break repair by reducing the levels of nucleases Sae2 and Dna2. Nucleic Acids Res. 43: 6889-6901. https://doi.org/10.1093/nar/gkv520
  86. Winter G, Hazan R, Bakalinsky AT, Abeliovich H. 2008. Caffeine induces macroautophagy and confers a cytocidal effect on food spoilage yeast in combination with benzoic acid. Autophagy 4: 28-36. https://doi.org/10.4161/auto.5127
  87. Robert T, Vanoli F, Chiolo I, Shubassi G, Bernstein KA, Rothstein R, et al. 2011. HDACs link the DNA damage response, processing of double-strand breaks and autophagy. Nature 471: 74-79. https://doi.org/10.1038/nature09803
  88. Saiki S, Sasazawa Y, Imamichi Y, Kawajiri S, Fujimaki T, Tanida I, et al. 2011. Caffeine induces apoptosis by enhancement of autophagy via PI3K/Akt/mTOR/p70S6K inhibition. Autophagy 7: 176-187. https://doi.org/10.4161/auto.7.2.14074
  89. Tsabar M, Mason JM, Chan YL, Bishop DK, Haber JE. 2015. Caffeine inhibits gene conversion by displacing Rad51 from ssDNA. Nucleic Acids Res. 43: 6902-6918. https://doi.org/10.1093/nar/gkv525
  90. Zelensky AN, Sanchez H, Ristic D, Vidic I, van Rossum-Fikkert SE, Essers J, et al. 2013. Caffeine suppresses homologous recombination through interference with RAD51-mediated joint molecule formation. Nucleic Acids Res. 41: 6475-6489. https://doi.org/10.1093/nar/gkt375
  91. Choi EH, Yoon S, Park KS, Kim KP. 2017. The homologous recombination machinery orchestrates post-replication DNA repair during self-renewal of mouse embryonic stem cells. Sci. Rep. 7: 11610. https://doi.org/10.1038/s41598-017-11951-1
  92. Kimler BF, Leeper DB, Snyder MH, Rowley R, Schneiderman MH. 1982. Modification of radiation-induced division delay by caffeine analogues and dibutyryl cyclic AMP. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 41: 47-58. https://doi.org/10.1080/09553008214550041
  93. Wang H, Boecker W, Wang H, Wang X, Guan J, Thompson LH, et al. 2004. Caffeine inhibits homology-directed repair of I-SceI-induced DNA double-strand breaks. Oncogene 23: 824-834. https://doi.org/10.1038/sj.onc.1207168
  94. Tsujimoto Y, Shimizu Y, Otake K, Nakamura T, Okada R, Miyazaki T, et al. 2015. Multidrug resistance transporters Snq2p and Pdr5p mediate caffeine efflux in Saccharomyces cerevisiae. Biosci. Biotechnol. Biochem. 79: 1103-1110. https://doi.org/10.1080/09168451.2015.1010476
  95. Prasad R, Goffeau A. 2012. Yeast ATP-binding cassette transporters conferring multidrug resistance. Annu. Rev. Microbiol. 66: 39-63. https://doi.org/10.1146/annurev-micro-092611-150111
  96. Hood-DeGrenier JK. 2011. Identification of phosphatase 2A-like Sit4-mediated signalling and ubiquitin-dependent protein sorting as modulators of caffeine sensitivity in S. cerevisiae. Yeast 28: 189-204. https://doi.org/10.1002/yea.1830
  97. Kot M, Daniel WA. 2008. Caffeine as a marker substrate for testing cytochrome P450 activity in human and rat. Pharmacol. Rep. 60: 789-797.
  98. Kumada K, Yanagida M, Toda T. 1996. Caffeine-resistance in fission yeast is caused by mutations in a single essential gene, crm1+. Mol. Gen. Genet. 250: 59-68.
  99. Benko Z, Miklos I, Carr AM, Sipiczki M. 1997. Caffeine-resistance in S. pombe: mutations in three novel caf genes increase caffeine tolerance and affect radiation sensitivity, fertility, and cell cycle. Curr. Genet. 31: 481-487. https://doi.org/10.1007/s002940050233
  100. Kuramae EE, Robert V, Snel B, Boekhout T. 2006. Conflicting phylogenetic position of Schizosaccharomyces pombe. Genomics 88: 387-393. https://doi.org/10.1016/j.ygeno.2006.07.001
  101. Vivancos AP, Castillo EA, Jones N, Ayte J, Hidalgo E. 2004. Activation of the redox sensor Pap1 by hydrogen peroxide requires modulation of the intracellular oxidant concentration. Mol. Microbiol. 52: 1427-1435. https://doi.org/10.1111/j.1365-2958.2004.04065.x
  102. Toda T, Shimanuki M, Saka Y, Yamano H, Adachi Y, Shirakawa M, et al. 1992. Fission yeast pap1-dependent transcription is negatively regulated by an essential nuclear protein, crm1. Mol. Cell. Biol. 12: 5474-5484. https://doi.org/10.1128/MCB.12.12.5474
  103. Benko Z, Fenyvesvolgyi C, Pesti M, Sipiczki M. 2004. The transcription factor Pap1/Caf3 plays a central role in the determination of caffeine resistance in Schizosaccharomyces pombe. Mol. Genet. Genomics. 271: 161-170. https://doi.org/10.1007/s00438-003-0967-3
  104. Wemmie JA, Szczypka MS, Thiele DJ, Moye-Rowley WS. 1994. Cadmium tolerance mediated by the yeast AP-1 protein requires the presence of an ATP-binding cassette transporter-encoding gene, YCF1. J. Biol. Chem. 269: 32592-32597. https://doi.org/10.1016/S0021-9258(18)31675-2
  105. Jungwirth H, Wendler F, Platzer B, Bergler H, Hogenauer G. 2000. Diazaborine resistance in yeast involves the efflux pumps Ycf1p and Flr1p and is enhanced by a gain-of-function allele of gene YAP1. Eur. J. Biochem. 267: 4809-4816. https://doi.org/10.1046/j.1432-1327.2000.01537.x